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Abstract

A functional form often employed in cost-estimating relationships is Y = otYP, where Y 
and X are the cost and predictor variables, respectively, and a and (3 are parameters to be 
estimated from empirical data. Logarithmic transformation of either side of this 
intrinsically linear relationship leads to 7*   a* + fL¥*, with the asterisks denoting logs. 
What typically happens in practice is that ordinary least squares (OLS) regression is 
applied to a set of observations on Y* and X*, generating estimates of a* and p. From a 
statistical point of view, however, justification of this process requires the presence of a 
multiplicative random error term in the untransformed model. In addition, the 
multiplicative structure gives rise to variance in cost that changes systematically with X. If 
the error term is additive, the variance in cost will be constant, but the parameters in that 
model must be estimated by nonlinear least squares (NLS) applied to the untransformed 
variables. In general, OLS and NLS lead to different parameter estimates and different 
cost predictions, and frequently analysts are unsure as to which method is correct. This 
paper reports on a Monte Carlo study of the accuracy of each estimation method under 
correct and incorrect error specifications. The multi-predictor model that serves as the 
basis of the study is representative of models with which cost analysts frequently deal. 
Results suggest that OLS, applied to the logs of the variables, may be the preferred 
method under either specification, provided the estimate of a is properly developed. This 
finding, however, is applicable strictly to the issue of parameter estimation. Accuracy of 
cost prediction requires further analysis.

Background

Cost-estimating relationships are the bread and butter of applied cost analysis. Those 
formulations typically have some measure of cost (unit, average, or total) as the dependent 
variable, and one or more predictor variables on the right-hand side. The predictors 
capture important design, performance, and programmatic dimensions of the item whose 
cost is to be estimated.



Considering, for simplicity, the case of a single predictor, a functional form often used for 
the cost relationship is:

where Y and X are the cost and predictor variables, respectively, and a and |3 are 
parameters to be estimated from empirical data. Obtaining accurate estimates of the 
model's parameters contributes to the accuracy of predictions and is doubly advantageous 
in that it permits meaningful sensitivity analysis   "what if drills   to be performed on the 
design, performance, and programmatic variables of interest. This paper's primary 
concern is with accuracy of parameter estimation, although some aspects of prediction are 
addressed in appendix A. A subsequent paper will deal with predictive accuracy in more 
depth.

The functional form displayed above enjoys widespread acceptance for at least two 
reasons. First, in many cases analysts have reason to believe that (unit) cost varies 
nonlinearly with, for instance, weight (0 < |3 < 1) or procurement quantity (-1 < P < 0). 
And second, the function is intrinsically linear, meaning that a logarithmic transformation 
of both sides produces a linear relationship:

7* = cc* + ply*, 

with the asterisks denoting logs. 1

What frequently happens in practice is that ordinary least squares (OLS) regression is 
applied to a set of observations on Y* and X*, generating estimates of a* and f3. 
Correlation coefficients are computed, significance tests carried out, and a value of Y* 
predicted, conditional on some value of X*. Computing the antilog of the predicted Y*, 
sometimes with an associated prediction interval, usually completes the cost-estimating 
process.

From a statistical point of view, the extent to which this process can be justified depends 
on the exact stochastic specification taken for the model. The logarithmic transformation 
requires the assumption of a multiplicative random error term (V) in the original 
formulation:

thereby leading, after transformation, to a function with additive error, which is standard 
in the linear regression model:

'A third feature that some analysts find attractive is that a value of zero for X means that Y will also be 
zero.



Moreover, for the usual   or at least some of the usual   regression results to hold, a 
further assumption about the form of Vis needed:

with U assumed to be a normally distributed random variable having mean zero and 
variance a2 . Thus, V is lognormally distributed.

The somewhat peculiar properties of this model have been thoroughly examined in the 
statistical and econometric literature [1 through 3] and were revisited not long ago in a 
cost analysis setting [4,5]. They are summarized in appendix A. One of those properties, 
which is directly relevant to the focus of this paper, concerns the conditional variance of Y. 
This specification with multiplicative error gives rise to a heteroscedastic Y, meaning that 
the conditional variance of Y changes systematically with^ 2 (If dY/dX> 0, Var(Y\X) will 
increase with X; otherwise it will decrease.) A conceptual sketch of the increasing 
variance is shown in panel A of figure 1, where (0 < |5 < 1) is assumed. Panel B depicts 
the same nonlinear form but with homoscedastic (constant) variance. Its corresponding 
stochastic specification is:

where Wis the normally distributed error with mean zero and variance a2 . Clearly this 
function cannot be linearized by logarithmic transformation, thus ruling out direct 
application of OLS regression. Its parameters can be estimated, however, by nonlinear 
least squares (NLS), a procedure whose properties are well understood and for which 
computer codes are readily available. 3

Summing up the discussion thus far, if an analyst believes that the variance in cost will 
increase (decrease) as cost increases (decreases), the multiplicative error specification is 
the correct one. That specification also justifies use of standard regression procedures on 
the logarithms of the variables. (But as appendix A explains, matters are still not entirely 
straightforward.) On the other hand, constant error variance calls for an additive error 
term and necessitates parameter estimation by nonlinear least squares applied to the 
untransformed variables. 4 The central question of this paper is, Does the difference 
matter? The answer will be sought through a Monte Carlo experiment. Before discussing 
that experiment, however, we describe what motivated it: a cost-estimating relationship

2See, for example, [6, p. 121] and also appendix A.
3Nonlinear least squares computations reported in this paper were carried out by using the NLIN
procedure in the statistics package licensed by the SAS Institute Inc. The iterative search method
employed is GAUSS.
4By assuming the additive error term to be normally distributed, the nonlinear least squares estimators are
also maximum likelihood estimators. See [7, p. 262].



whose OLS and NLS parameter estimates differed substantially, leading to 
correspondingly different predictions of the cost in question.

Figure 1. Alternative error specifications

Multiplicative error Additive error

Panel A PanelB

Motivation for the Monte Carlo study

In Augustine's Laws, Norman Augustine put forth several observations that, despite (or 
perhaps because of) the light-hearted nature of his book, have influenced thinking in the 
defense analytic community. One that has considerable interest for cost analysts is:

...the cost of an individual (tactical) airplane has 
unwaveringly grown by a factor of four every ten years. 
This rate of growth seems to be an inherent characteristic of 
such systems, with the unit cost being most closely 
correlated with the passage of time rather than with changes 
in maneuverability, speed, weight, or other technical 
parameters. [8, p. 140]

This proposition was tested recently at the Center for Naval Analyses [9]. A consistent 
source of procurement cost data was available for 17 fighter and attack aircraft, a 
grouping that had been highlighted in Augustine's work. We constructed a regression 
model with unit-100 flyaway cost (in millions of FY 1990 dollars) as the dependent 
variable. 5 The predictors were:

5 Strictly speaking, the variable was approximate unit-100 flyaway cost. The unit cost was approximated 
by the average cost for the lot that included unit 100.



1 . A time variable, defined as the year in which the first operational unit was delivered 
(19xx- 1900)

2. Empty weight (in thousands of pounds)
3. Maximum speed at altitude (in knots)
4. Production rate in the year that included unit 100.

This formulation departed from Augustine's proposition in three respects. First, we 
measured cost in constant rather than current (then-year) dollars   the latter being the 
measure he used. Use of constant dollars permits trends and relationships unique to 
military aircraft to be ferreted out from those linked to the general increase in 
manufacturing prices over time. Second, we made no effort to capture maneuverability as 
a technical characteristic; its quantification is not straightforward and data are not 
generally available. Finally, we added a fourth variable in the belief that unit cost varies 
inversely with production rate.6 These differences notwithstanding, estimation and testing 
of the model's parameters provides at least a partial test of what Augustine had to say.

The form of this multi-predictor model was specified as:

where

C = unit- 100 flyaway cost 
W = empty weight 
S = max speed 
R = production rate 
T - year of first delivery 
V = random error term 

a, P, A,, 8, p = model parameters.

With transformation, this relationship is linear in Tand in the logs of all other variables. 7 
Its parameters were estimated by applying OLS to that set of variables. Results are in 
table 1 below.

From a statistical point of view, these results appear to be quite satisfactory. Each 
parameter estimate is significant at better than the 0.02 level, and the $• value (applicable 
to the log of cost) is reasonably high. (Implications for the Augustinian test are 
straightforward. Aircraft weight, speed, and production rate each have important 
influences on cost, and the rate of real growth in cost, estimated by subtracting 1.0 from

6See, for example, [10, p.66].
7The expression (1 + p)^is standard representation of growth in discrete (period) form. Its counterpart in
continuous time is exp(pT ).



the antilog of the parameter estimate associated with 7', is only a bit more than 3 percent 
per year.)

Table 1. Parameter estimates for linearized cost model (R2 = 0.937)

Variable 
(parameter)

Intercept (a*)
Weight ((3)
Speed (A,)
Prod, rate (8)
Time(l + p)*

Parameter 
estimate

-4.2831
0.7128
0.6188
-0.3910
0.0326

Standard 
error

1.3208
0.1701
0.1509
0.1425
0.0059

t-ratio

-3.243
4.191
4.101
-2.744
5.503

p-value

0.0071
0.0013
0.0015
0.0178
0.0001

Despite the satisfactory appearance of these results, there is no a priori way of knowing 
that the multiplicative error specification is the correct one. Specifying an additive error 
and employing NLS estimation produces the results shown in table 2.

Table 2. Parameters estimated by nonlinear least squares (pseudo-^2 = 0.876) 

Variable (parameter)_____Parameter estimate_____Asymptotic stnd. error

Intercept (a)
Weight (P)
Speed (A)
Prod, rate (8)
Time (1 + p)

0.0552
0.4739
0.5247

-0.3543
1.0315

0.0922
0.1894
0.2086
0.1820
0.0070

A few clarifying remarks will aid in comparing the results in table 2 with those in table 1. 
First, in standard linear regression, the sum-of-squares explained by the regression (RSS) 
partitions as follows:

RSS = TSS - ESS,

where TSS and ESS are total sum-of-squares and error sum-of-squares, respectively. The 
R2 statistic is then defined as RSS/TSS or, equivalently, (1 - ESS/TSS). With nonlinear 
estimation, however, that partitioning is not assured. What has been called pseudo-.R2 
here is computed as (1 - ESS/TSS), which is closely analogous to the conventional 
measure. In comparing the value of that statistic in table 2 with its somewhat higher 
counterpart in table 1, one should remember that the latter represents the fraction of the 
log of cost that is explained, whereas the former pertains to the untransformed variable.

Second, concerning the format of table 2, the assumption that the additive error is 
normally distributed implies an asymptotic normal distribution for the NLS estimators, but



the usual small-sample /-tests are not applicable. The estimated asymptotic standard 
errors are shown, however, and may be compared against their corresponding parameter 
estimates, and against the standard errors in table 1, to provide some insights into 
estimation accuracy. 8 Such a comparison suggests, at least on the surface, that the 
estimates in table 1 are more precise than those in table 2.

Last, the estimate for the intercept in table 1 is in fact an estimate of a*, the log of a. In 
table 2, however, the NLS procedure estimates a directly. The antilog of the intercept 
value in table 1 is 0.0138. While that value, for reasons explained in appendix A, is an 
upwardly biased estimate of a, it is nevertheless the one typically used in practice. It is 
also very different only one-fourth as large as the estimate of a in table 2. Differences 
in the other estimates are not nearly as great, but they are by no means negligible.

In light of the above, it is natural to ask: Do these two sets of estimates lead to similar or 
dissimilar cost predictions? Table 3 posits values of predictor variables for several 
notional aircraft and shows the predictions of unit-100 flyaway cost generated by the OLS 
and NLS estimates.

Table 3. Comparative cost predictions and predictor values (costs in millions of FY 1990 
dollars)

OLS Pred. NLS Pred. Weight____Speed____Prod, rate Time

76.3
80.1
97.5
48.4
41.1

66.4
68.8
79.1
45.3
42.1

43.4
45.2
56.2
35.2
23.3

500
516
552
526
575

26
26
26
48
60

103
103
103
100
105

The asymmetry among the differences in predicted costs is striking. For the heavier 
aircraft, the OLS-based values are from 15 to 20 percent higher. That can be attributed in 
large part to the much higher parameter estimate for the weight variable (0.7128 
compared with 0.4739). But for the lighter aircraft, the two sets of costs are very nearly 
the same. Apparently the higher NLS estimate of a is compensating for its other, smaller 
estimates.

All of this is somewhat disquieting. First, uncertainty exists as to the correct error 
specification. Second, because of that, there is uncertainty as to which set of parameter 
estimates should be used. And last, the different estimates lead, at least in some cases, to 
very different cost predictions. 9 A question that arises at this point is: If the correct error

8Asymptotic 95-percent confidence intervals may be constructed by adding algebraically, to each 
parameter estimate,   1.96s, where s is the associated asymptotic standard error. 
9 A reviewer of this paper reran the two regressions using the "bi-weight" options in a statistical package 
called DATA-PLOT. His motivation was to reduce the effects of outliers on the parameter estimates and



specification is additive (multiplicative), and if OLS (NLS) is mistakenly chosen as the 
method of estimation, what will be the consequences in terms of loss of estimation 
accuracy? Monte Carlo methods can help answer that question.

The Monte Carlo experiment

The first step in a Monte Carlo study is to postulate the complete model that will serve as 
the basis of the study. This includes defining the model's variables, specifying its 
functional form, assuming numerical values for its parameters, and postulating the form 
and parameters of the probability distribution characterizing the error term. Next, a set of 
"observations" on the predictor variables   hereafter the design matrix— is created so as to 
be representative, in size and other characteristics, of the application being studied. Then 
a "trial" is carried out by:

1 . Obtaining a random drawing, one for each observation, from the postulated error 
distribution

2. Generating a set of "observed" values of the dependent variable (7) by combining each 
random error algebraically with the associated error-free value of F that was 
computed by applying the assumed numerical parameters to the design matrix

3. Estimating a vector of parameter values (p) from the simulated data, using each 
estimation method being evaluated in the study

4. Recording each of the/?; for later summary and comparison with the vector of 
postulated parameters (it).

A great many trials are then conducted in succession   typically several hundred. Results 
of the experiment are summarized and assessed as to estimation accuracy. The traditional 
measure of accuracy is mean squared error (MSE), which is related to variance (Var) and 
squared bias (Bias2) as follows:

MSE = Var + Bias2

The model chosen for the experiment is the one described in the preceding section. 
Absent an error term but with assumed parameter values, it is:

Except for the multiplicative constant, which was chosen arbitrarily, the other parameter 
values are rough averages of the OLS and NLS estimates in tables 1 and 2. The design 
matrix consists of essentially the same 17 observations on the predictor variables that 
made up the fighter and attack aircraft data base. Those data are provided in appendix B. 
In terms of number of observations, number of variables, and degree of independent and

predictions. In his results, the parameter estimates and predictions were in closer agreement than those 
reported above. He concluded, however, that the concerns expressed in the paper remain valid in general.



interdependent variability among the predictors, this model and data base are thought to 
be representative of those cost analysts frequently encounter.

Insofar as the Monte Carlo study is concerned, the crucial feature of the model is the 
random error term Two variants are examined: one where the error term is multiplicative 
and denoted by V, and the other where it is additive and denoted by W. In the first, ln(V) 
is postulated to be normally distributed with mean zero and variance 0.05. In the second, 
W\s likewise normal; its mean is zero and variance 140. The variance values were chosen 
to produce R^ (or pseudo-/?2) statistics in the neighborhood of 0.90.

Model with multiplicative error

Table 4 below, which pertains to the model with multiplicative error, displays results 
summarized over 500 trials for each specification. There the appropriate estimation 
method is OLS, applied to the transformed relationship. For each parameter, the table 
shows (1) its actual (postulated) value, (2) the mean of the 500 estimates, (3) the variance 
and squared bias of those estimates, and (4) the root-mean-squared error (RMSE) as a 
fraction of the actual parameter value. 10

Table 4. Monte Carlo results for the model with multiplicative error

Parameter

a-(est. 1)
a - (est. 2)
P
A
5
1+p
JO-

a
P
A
8
1 + p
n2

Actual value

0.3
0.3
0.6
0.5

-0.4
1.03

0.3
0.6
0.5
-0.4
1.03

Mean

 OLS
0.9037
0.2875
0.6102
0.5021

-0.3983
1.0298
0.9030
  NLS

1.3239
0.6045
0.5146

-0.4301
1.0305
0.8997

Variance

estimates  
5.5243
0.7257
0.0517
0.0231
0.0268
0.0000
0.0015

estimates  
10.8063
0.0766
0.0435
0.0514
0.0001
0.0026

Bias2

0.3644
0.0002
0.0001
0.0000
0.0000
0.0000

1.0483
0.0000
0.0002
0.0009
0.0000

_ _ _

RMSE/Act.

8.0889
2.8400
0.3793
0.3042

-0.5719
0.0062

11.4768
0.4612
0.4182

-0.6139
0.0080

_ _ _

For the OLS results, which we consider first, two sets of estimates of a are generated. 
The first is simply the antilog of a*, where a* is the estimate of a*. As noted earlier, this

IOThe authors acknowledge that although the Monte Carlo results are reported to four decimal places, 500 
trials are almost certainly too few to provide that level of accuracy.



is the estimate used in practice almost without exception. The second is the antilog of 
[a*- est. Var(a*)/2]. n Appendix A establishes this as the theoretically superior 
estimator. Results in table 4 indicate that its superiority is far from just theoretical. The 
conventional estimates of oc exhibit serious flaws. Their variance is quite large and there is 
substantial bias. Ordinarily there is no causal connection between variance and bias, but in 
this case there is. 12 The hypothetical data in table 5 describe the connection on an intuitive 
level.

Table 5. Hypothetical estimators of/»(05), where 05 = 1

First estimator____________Second estimator

wj* P(W]*) exp(wj*) w>2* P(^?*) exp(w?*)

Mean
Variance

Bias2

1
0

-1

0.0
0.5
0.0

0.25
0.50
0.25

_ _ _
_ _ _
- - _

2.718
1.000
0.368

1.272
0.764
0.074

2
0

-2

0.0
2.0
0.0

0.25
0.50
0.25

_ « _

_ _ _

7.389
1.000
0.135

2.381
8.484
1.907

Imagine that the parameter of interest in the table is 05 = 1. What is being estimated, 
however, is its logarithm, /w(05) = 05* = 0. The table gives probability distributions of two 
hypothetical estimators of 05*, labeled Wj* and w2*, with u>2 * having the larger variance. 
Both wj* and w2 * are unbiased estimators of 05* in that E(WI*) - E(w2 *) = 05* = 0. But it 
is the antilogs of the estimates that are typically computed, and the antilogs constitute a 
biased estimator of 05, with the bias increasing systematically as variance increases. Only in 
the special case of zero variance is there no bias. Interestingly, OLS estimates of the log 
of (1 + p) in table 4 border on that case. The conditioning of the design matrix is such 
that the variance of the antilogs of those estimates from the Monte Carlo results  is 
zero through four decimal places. Consequently the antilogs produce very precise 
estimates of that parameter. The remaining parameters are estimated by OLS with 
virtually no bias, as statistical theory leads us to expect. However, their root-mean- 
squared errors are 30 to 40 percent as large as the actual values, a reminder that 
unbiasedness and estimation precision are not the same thing.

Turning to the results generated by nonlinear least squares an inappropriate estimation 
method for the model with multiplicative error the estimates of a are considerably worse 
than either set of OLS estimates. There is a very large variance and a large positive bias. 
That is attributable in brief to the "inflated" values of cost produced by the multiplicative 
error. The other parameters are estimated essentially without bias, and (1 + p) is again

11 The estimated variance of a* is the conventional one: the square of the estimated standard error of a* 
or, equivalently, the first element off the main diagonal of the estimated variance-covariance matrix. 
12The method of ridge regression, where the parameter estimates are biased in such a way as to achieve 
substantial variance reduction, is one notable exception to this statement.

10



estimated with considerable precision, but the relative RMS errors are roughly one-third 
larger than their OLS counterparts. In short, nonlinear least squares is demonstrated to be 
an inferior estimation method for this model, as expected. We note also that the mean R^ 
statistics are virtually identical for OLS and NLS. This is somewhat discouraging because 
it suggests that, when doubt exists, 7?2 cannot be relied on to confirm OLS as the correct 
estimation method.

Model with additive error

Results in table 6 are generated by the model having additive error, with NLS being the 
appropriate estimation method. We note first that here, unlike the results with 
multiplicative error, the mean R2 value is much higher for the appropriate method. Then, 
a quick comparison of the corresponding error ratios confirms, with one glaring exception, 
what was expected: NLS performs better. Except for the estimates of a, the OLS 
estimates tend to be biased upward and exhibit error ratios roughly twice as large as the 
NLS ratios. (Note, however, that the OLS error ratios are not appreciably different from 
what they were in table 4, and that the ratio for the preferred estimate of a is even lower 
than its table 4 value.)

Table 6. Monte Carlo results for the model with additive error

Parameter Actual value Mean Variance Bias2 RMSE/Act.

  OLS estimates  
a-(est. 1)
a - (est. 2)
P
A
5
1+p
#2

a
P
A
5
1+p
#2

0.3
0.3
0.6
0.5

-0.4
1.03

0.3
0.6
0.5

-0.4
1.03
_ _ _

1.1699
0.1808
0.6216
0.5226

-0.4360
1.0316
0.8740
  NLS

0.4994
0.6049
0.5014
-0.4033
1.0302
0.9442

16.5138
0.3447
0.0575
0.0396
0.0422
0.0001
0.0043

estimates  
0.9407
0.0157
0.0172
0.0131
0.0000
0.0005

0.7567
0.0142
0.0004
0.0005
0.0013
0.0000

_ _ _

0.0397
0.0000
0.0000
0.0000
0.0000

_ _ _

13.8525
1.9969
0.4014
0.4000

-0.5214
0.0079

3.3005
0.2090
0.2623

-0.2863
0.0043

_ _ _

The situation with respect to a is surprising. There is no theoretical reason to expect the 
amount of upward bias in the NLS estimates that emerged, and certainly no reason to 
expect an RMS error half-again as large as that for the preferred OLS estimate. Because 
this was such an unexpected result, it was pursued further from a number of perspectives.

11



First, to ensure that the result was not due to anomalies in this particular set of 500 trials, 
the experiment was repeated with additional sets of 500. All results were virtually 
identical. Then, hypothesizing that the difficulty might stem from the true parameter 
value's being relatively close to zero, we increased the value of oc, first to 0.8 and then to 
3.0, making proportional increases in the variance of the random error term. 13 Again, the 
same pattern of bias and estimation error emerged. Finally we examined frequency 
distributions of the 500 estimates of a and the other parameters as well. For a, the 
distributions are extremely right-skewed. Their medians are relatively close to the true 
parameters, but as with all very right-skewed distributions the means are well to the 
right of the medians, thus producing the upward bias. This suggests that the sample size 
here (17) is much too small for the property of asymptotic normality (of the estimators) to 
be manifest. That is not the case, however, with the distributions of the estimates of the 
other parameters. Those distributions center on the true values of the parameters and are 
Gaussian in shape.

Were it not for the finding pertaining to a, we would have concluded from the Monte 
Carlo experiment without great fanfare that the appropriate estimation method clearly 
outperforms its alternative. The obvious implication of that conclusion would be that 
analysts should endeavor, through examination of residual plots and by formal tests for 
heteroscedasticity, to ascertain the form of the random error embedded in any given data 
set. To the extent that a person is interested only in obtaining accurate estimates of the 
parameters other than a for use in, say, system design or policy analysis that 
implication remains valid. In cases where it is important to obtain an accurate estimate of 
a, our results suggest that applying ordinary least squares to the logarithms of the 
variables, and using exp[a* - est.var.(a*)/2] to estimate a, may be a better bet in either 
case. It is demonstrably better when the errors are multiplicative, and it seems to be a 
safer alternative even with additive errors, given the problems with the NLS estimates of 
a.

What may be more likely, however, is that the statistical work is being done to construct a 
mechanism for predicting some as-yet-unknown cost. Appendix A reviews relevant issues 
and procedures pertaining to prediction with the multiplicative-error model. But a larger 
question concerning prediction is one that directly parallels the parameter-estimation focus 
of this paper: If either OLS or NLS is used when in fact the other is called for, what will 
be the consequences? The authors are planning further Monte Carlo experiments 
centering on predictive accuracy in partial pursuit of the answer to this question.

13Had the error variance not been increased proportionally, the "noise" in the cost variable would tend to 
be negligible, producing R2 values approaching 1.0. The parameter estimation process would then lose its 
statistical content, with there being only one vector of parameter values the true values that would 
constitute a "best fit."

12



Concluding remarks

As noted earlier, the model selected for study here 17 observations and 4 predictor 
variables, with R2 values in the 0.90 range and data drawn from design and performance 
characteristics of actual aircraft is thought to be representative of much of the applied 
work in statistical cost analysis. We consider it unlikely that small perturbations to the 
model's specification, dimensions, or data characteristics would materially alter the Monte 
Carlo results. In fact, we examined a few such perturbations, confirming a degree of 
robustness in the results. Nevertheless, universality can never be claimed for the outcome 
of a Monte Carlo experiment. What we have here can best be thought of as a single case 
study. With several such studies in hand, each dealing with the same general topic but 
differing in such a way as to broaden or deepen the topic's exploration, generalizations 
might then be justified. We hope sincerely that other researchers will be inclined in that 
direction.

13



Appendix A 

Properties of the log-linear regression model

This appendix summarizes mean and variance properties and examines issues relating to 
parameter estimation and prediction with the linear-in-logs model described at the outset 
of the paper:

where Y and X are the dependent and predictor variables, respectively, a and (3 the 
parameters to be estimated, and V a multiplicative random error term. 14 The model in 
logarithmic form is:

7* = a* + $X* + V*,

with the asterisks denoting logs. The exposition here is drawn from [1 through 3, 6]. 

The standard assumption is that Fis lognormally distributed, i.e.,

where f/is normal with mean zero and variance <j2. jj js also assumed to be 
stochastically independent ofX. Interest typically centers on the conditional mean of For, 
in the context of this paper, expected cost, conditional on some value ofX. Thus we note:

E(Y\ X) = aJ&E(V\X) = aJ$E(V).

But because of the assumption made about the form of V— an assumption that justifies 
direct application of ordinary least squares (OLS) to the logarithms of the variables   the 
expectation of Fis not unity but instead, from the properties of the lognormal distribution:

E(V) =

Because E(U) = 0 by assumption, the conditional mean of Y becomes:

E(Y\X)

1 Economists refer to this functional form as Cobb-Douglas. It was the form adopted in the pioneering 
studies of production by C.W. Cobb and Paul H. Douglas. An interesting and sometimes attractive feature 
of the model is its property of constant elasticity, i.e., (dY/dX)(X/Y) = |3.
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The importance of this in practice is that given a set of estimates for a* and p\ denoted by 
a* and Z>, and given some predictor value X0, the quantity exp[cr* + b(\nX0)] constitutes an 
estimate of the conditional median of Y, not its conditional mean.

Before turning to the matter of parameter estimation, we examine the conditional variance 
of Y. It is convenient to do so by first subtracting the conditional mean of Y from Y:

Y- E(Y\X) = 

which makes it possible to write:

K[Y- E(Y\ X)]2 = E{aX$[V- E(V)}}2 =

Thus the conditional variance of Y will vary with X, being proportional to the square of the 
conditional median of 7, with E[V- E(V)}2 being the variance of the multiplicative error. 15 
This is the heteroscedasticity (in Y, not V) that was noted earlier in the paper.

Parameter estimation

We consider application of ordinary least squares to the transformed model:

y* = a* + ** + u.
This formulation satisfies all assumptions of the standard linear regression model and, by 
the Gauss-Markov theorem, OLS estimators of a* and (3 are unbiased and have minimum 
variance among the class of linear unbiased estimators. If there were multiple predictor 
variables, the same statement would apply to the parameters associated with each. At 
issue, however, is the matter of obtaining an estimate of the original a that has the same 
desirable properties.

We denote the least-squares estimator of a* by a* and observe that, because a* is 
normally distributed, exp(a*) is lognormally distributed. From the earlier discussion of 
lognormal variables, we see that

£[exp(a*)] = exp[£(a*) + Var(a*)l2] = exp[a* + Far(a*)/2] - aexp[Far(a*)/2].

To recap in words, the expected value of the antilog of the estimated intercept is not equal 
to a but instead to the product of a and exp[Far(a*)/2]. Thus, the antilog of a*   the 
estimate of a that is typically used in practice   is biased, with the bias being upward 
because exp(Tor(a*)/2] is greater than 1.0. If Var(a*) were known with certainty, the 
bias could be eliminated simply by subtracting Var(a*)/2 from a* before taking its antilog, 
i.e.,

15The variance of F= exp(t/), with U having mean zero and variance a2, is exp(a2)[exp(a2) -1]. 
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£{exp[a* - Var(a*)/2]} = exp(a*) = a.

However, the Var(a*}can only be estimated because it involves the unknown a2 . 
Nevertheless, subtracting one-half the estimated variance of a* — in practice, one-half the 
square of the estimated standard error of that parameter estimate   will very nearly 
eliminate the bias. 16

Prediction

A prediction of Y, conditional on X0 , is actually an estimator of exp(a* + pL¥"0 *)exp(a2/2). 
The natural or "naive" estimator of exp(a* + (3*), the conditional median of 7, is 
exp(j>), where y = a* + b(\nX0). But that estimator is biased upward, for the same reason 
that exp(a*) is an upwardly biased estimator of a. In particular,

£[exp( y)] = exp[£(y) + Var(y)/2] = expfa* + pT0* + Var(y)!2]. 

To deal with that, we first require the estimated variance ofy, which we denote by s 2 : 

Var(y) = Var(cV) = s* = cs2(XX)- lc\

where c is the row vector of prediction values   (1 lnX0) in this case   c' is its transpose, 
V is the transpose of the row vector (a* b), and s2(XX)~l is the estimated variance- 
covariance matrix of a* and b. 17 Multiplying exp(y) by exp(-sy2/2) removes, or essentially 
removes, the bias. What remains is the median-to-mean adjustment. That is accomplished 
by multiplying the preceding result by exp(s2/2). In sum, a prediction of the conditional 
mean of Y is given by:

Ypred = exp[a* 

As explained earlier, this predictor is very nearly but not exactly unbiased.

16It turns out that an exactly unbiased estimator of a is given by exp(a*)Fa, where Fa is the sum of an
infinite series that is a function of three statistics: the number of degrees of freedom in the regression, the 
first element off the main diagonal of the inverse of the raw moment matrix, and s2 . Similarly, an exactly 
unbiased estimator of exp(o2/2) involves a nearly identical series, but with the series being a function of 
only the number of degrees of freedom and s2 . See [1, 2, 3, and 4]. But the results in table 4 of this paper 
and the tabulated values of the series in [3] suggest that when exp[o* - est. Far(a*)/2] is used to estimate 
a, the remaining bias tends to be negligible.
17The scalar analog to this variance computation is as follows: If P is a random variable and k a constant 
in Q = kP, then Far(Q) = Var(kP) = kz Var(P).
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Summary numerical example

The hypothetical example below will tie the preceding discussion together and 
demonstrate the use of standard regression output in applying the relevant concepts. 
Consider that the log of Y has been regressed on the log of X, with all assumptions 
underlying that process being satisfied, and that the following results were obtained:

Estimated variance- 
Parameter (estimator)____Numerical estimate_____covariance matrix
a* (a*)

P (V
a2 (s2)

4.8386
0.6715
0.1260

0.1855 -0.0511
-0.0511 0.0147

—

Imagine first that we are interested in obtaining an unbiased   or nearly unbiased   
estimate of a, which we denote by a. In the context of this example, that parameter might 
represent unit-one cost in a total cost function, with X representing aggregate 
procurement quantity. That estimate is given by:

a = exp[a* - est. Var(a*)l2] = exp[4.8386 - 0. 1 855/2] =115.1.

Note that this estimate is some 9 percent lower than the naive or unconnected estimate, 
exp(a*) = exp(4.8386) - 126.3.

Our interest, however, is more likely to be in predicting the mean value of 7, conditional 
on some value of^T0 . Let that value of^T0 equal 1000. The unconnected prediction, which 
is also a prediction of the conditional median of Y, is simply:

y = exp[a* + b(\nX0)] = exp[4.8386 + 0.6715(6.9078)] = 13,058.4.

That prediction must then be corrected for (1) the median-to-mean adjustment, and (2) 
the bias embedded in the original median prediction. The first is accomplished by 
multiplying y by exp(s2/2), and the second by multiplying that result by exp(-5y2/2). Recall 
that (sy2) is formed by pre-multiplying the estimated variance-covariance matrix by the row 
vector of prediction values, and then post-multiplying that result by the prediction vector 
transposed to column form. The computations to obtain (sy2) are:

x (0.1855 -. 
6.9078) = 0.1810.

The final, corrected prediction is:

Ypred=y{exp[(s2/2) - (s//2)]} = 13,058.4exp(0.1260/2 - 0.1810/2) - 12,704.2
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This result is 3 percent lower than the naive prediction, but that outcome is strictly a 
function of the hypothetical data being used. For instance, had the prediction value of X 
been 100 instead of 1000, s2/2 would have been larger than sy2/2, and the corrected 
prediction would have exceeded the naive one. In general, however, the differences, 
whether plus or minus, are not likely to exceed a few percentage points.
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Appendix B

The Design Matrix and Error-Free Cost Values

Cost

33.190
65.669
35.272
53.929
83.448
165.152
128.644
88.562
125.830
29.606
30.820
79.079
36.146
34.807
76.335
91.605
131.444

Weight

18.400
25.298
15.497
19.856
27.424
39.037
25.800
16.234
23.050
21.052
20.638
28.494
19.350
12.760
25.855
24.861
46.172

Speed

545
530
595
423
1283
1170
1434
1265
990
521
775
950
680
1150
1195
1153
1262

Production 
Rate

94
48
157
100
72
48
72
105
63
100
180
48
108
153
65
40
83

Time

55
63
66
75
60
72
74
78
80
50
53
57
55
58
58
59
67
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