Multivariate and Non-linear
Regression Models
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Non-linear Models - Introduction

* To model non-linear relationships with OLS
regression, the data must first be transformed in
a way that makes the relationship linear

 All the steps for linear regression may then be
performed on the transformed data

* The most common forms of non-linear models
are:
- Logarithmic
- Exponential
- Power
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Linear Transformations
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Example: Exponential Model

+ We will use the same data as before, but apply an
exponential model to it

- Recall that the data failed the White test for homoscedasticity
(p=0.047)

- In practice, a Power model/ (linear when take logs of both
sides) might be called for here, but this is shown in Module 7
(Learning Curves), so Exponential (linear when take log of y)
is demonstrated

* The next step is to conduct linear regression analysis
on the data in semi-log space

+ After the analysis is complete, we will transform the
parameters of the linear equation back to unit space

Tip: Exponential a=gna | " ‘
is rare in practice [Iny=|na+t_3x ﬁ y:aebe}

~ - e R
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Example: Exponential Model £

%

* First we run the regression: Tip: LOGEST() produces same output,
Exponential Model 5 = however- LOGEST coefficients a.re. the
13 Coafficients — 07 T exponentials of the LINEST coefficients.
andard rrors = = The regression is nearly
T 281 3 statistically significant at a = 0.10
SSR, SSE 0.44 0.28 with semi-log space R2 = 0.62
MSR, MSE 0.44 0.09
Y¥-bar, CV 0.669 45.3% 20
T stats 2.19 4.00 12
Pvalues Co.1160 > 0.0280 :2
12 —
+ Then we check the residual plot: " M
- The residual plot is ambiguous; we expand the 8 o :
White test... 3
- ..for a formal determination on homoscedasticity| °
Iny=|na+bx o 5 0 15 20
y:aebx a=elha=g1.34 =381 .
+  Finally, we find the parameters fon| b =0.07 Unit-space data
the unit space equation: > showing
Y =3.81e 0.07X exponential trend.
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Example: Exponential Model (Expanded White Test)

White Test Unit Model Expoential Model '™ = .

Auxiliary RA2: 0.79 0.62

White Stat: 3.93 3.12 0.0000 *

DF: 1 1 ol . = _-—
p-value: C 007 > o007 >

Conclusion: Heteroskedastic| Heteroskedastic 04000 .

05000

White Test Conclusions

* Homoscedasticity still rejected at o. = 0.10 (now not rejected at o = 0.05)
* In practice, could use MLE or Power Model (or the 5% significance
level), but we will proceed as if OLS assumptions were validated

Next Steps
 Calculate unit-space goodness of fit statistics for apples-to-

apples model comparisons
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Unit-Space Goodness of Fit Comparison

Statistic Linear |Exponential How to Calculate/Comments
Fit Space R"2 0.62 0.62 From LINEST(.)
Unit Space RA2 0.62 0.64 1-55E/S5T = 1-SUMSQ(=)/DEVSQ(y) in unit space
Unit Space Adj R"2 | 0.50 052 1-(({1-R"2)*[n-1))/df)
Fit Space SEE 2.46 0.30 From LINEST(.)
Unit Space SEE 2.46 2.40 SQRT(SSE/DF) in unit space
Fit Space CV 31% 45% SEE/y-bar in fit space
Unit Space CV 31% | 3@ SEE/y-bar in unit space

» These differences are not overwhelming, but the routine serves as a
reference for comparison of more complicated, multivariate models across

types
Warning: It is unusual for a power or exponential model to have

better unit space than fit space statistics; generally the unit space
conversion causes these stats to worsen
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Minding the Intercept

* One common mistake when performing OLS
regression is the omission of a y-intercept in power
and exponential models when one exists

- This has the effect of causing higher than necessary error in
the regression

- Fortunately, it can easily be detected by examining the
relation of the trendline to the data

- It can also be corrected by adding (or subtracting) a constant
value to (from) the y-values in the data and examining the
change in the trendline (“the simple way”) or by using Solver
or other packages (“the elegant way”)

» The example on the next page assumes the data
follows a power curve with a non-zero y-intercept

“To b or Not to b’ The y-intercept in Cost Estimation, R. L. Coleman, J. R.
Summerville, P. J. Braxton, B. L. Cullis, E. R. Druker, SCEA, 2007.
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Minding the Intercept - Example

» The plot to the top-right shows the
actual data as well as the data
that has been adjusted to take the
intercept into account

* The data was adjusted by
subtracting a constant from all y-
values until the optimal R? was
achieved

» This constant is the best guess for
the y-intercept
- A “bowing” of the data in relation
to the trendline is the symptom
that led to the belief in an
intercept

e The plot to the bottom-right shows
this same graph in log-space

« Adding the intercept greatly
increases the R? of the regression

- Without intercept: .9162
- With intercept: 1

[@EAA SEBek

-0.2467 1

y=4.2867x Power Curve y=Xx
R*=09162 R =1
81
7 The data is “bowed”
6 meaning it is curved
differently than the  Actual Curve
5 trendline

Adjusted Curve
—— Power (Actual Curve)
—— Power (Adjusted Curve)

0 1 2 3 4 5
X
y==x- 2E-16 Power Curve in Log-Space Y = ~0-2467x +1.4555
Ri=1 R*=0.9162
5 Data “bowing” shows up
[ ocerin s i
,,,,,,,,,

+ Actual Curve
Adjusted Curve

— Linear (Actual Curve)

— Linear (Adjusted Curve)

Unit lll - Module 8 9
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* The ANOVA statistics
for the two
regressions are
shown to the right

* Notice the decrease
in standard error and
increase in R?

Minding the Intercept - Example

Regression Statistics

Multiple R 0.957159023
R Square 0.916153395
Adjusted R Square 0.910164352
Standard Error 0.060953166
Observations 16
ANOVA
df SS MS F Significance F

Regression 1 0.568333545 0.568334 152.9716  6.33998E-09
Residual 14 0.052014039 0.003715
Total 15 0.620347583

Coefficients _Standard Error __t Stat ___P-value __Lower 95%
Intercept 1.455511028  0.018553102 78.45109 6.5E-20 1.415718583
In x -0.246655725  0.019942786 -12.36817 6.34E-09 -0.289428747

Regression Statistics
Multiple R 1
R Square 1
Adjusted R Square

1
Standard Error 3.68462E-16

[@EAA SEBek

Warning: These “perfect”
results are from a toy problem
using “cooked” data

Observations
ANOVA

df SS MS F Significance F
Regression 1 9.341591866 9.341592 6.88E+31 3.024E-216
Residual 14 1.9007E-30 1.36E-31
Total 15 9.341591866

C icient: Standard Error t Stat P-value Lower 95%
Intercept 0 1.12154E-16 0 1 -2.40545E-16
In x -1 1.20554E-16  -8.3E+15 3E-216 -1
Unit IIl - Module 8 10
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Non-linear Model Summary

» The same process performed on the exponential
example applies to other non-linear model types

- The only difference lies in which piece of the data set gets
transformed

* i.e.  Logarithmic < take the log of the x data
Exponential << take the log of the y data
Power <> take the log of both x and y
« Other functions can be used to transform data (e.g. /X, sin x,
etc.) but logarithms are the most common

47

Tip: Power models are used 8
to analyze learning curves - ‘ ) s
they are probably the most oy,

common use of non-linear
regression in cost analysis 8
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Multivariate Regression

AKA Multiple Regression |

Basics

ANOVA Reuvisited
Adjusted R?

t and F Summary

) .
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Multivariate Regression

* |If there is more than one independent variable
in linear regression we call it multivariate
0 regression

» The general equation is as follows:

y=a+b1X1+b2X2+...+kak+8 Y/
- So far, we have seen that for one independent ... v
variable, the equation forms a line in 2-dimensions

- Fortwo independent variables, the equation forms a
plane in 3-dimensions e .

- For three or more variables, we are working in higher
dimensions which are difficult to display visually in M
Excel.

* The math is more complicated, but the results
can be easily obtained from a regression tool or
simple formula (LINEST()) as found in Excel

=Ty

: Unit lll - Module 8 13
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Multivariate Regression

y=a+bx, +byx,+...+bx t+e
* In general the underlying math is similar to the
simple model, but matrices are used to represent
the coefficients and variables

- Understanding the math requires background in Linear
Algebra

- Demonstration is beyond the scope of the module, but can
be obtained from the references
* Some key points to remember for multivariate
regression include:
- Perform residual analysis between each X variable and Y

- Avoid multicollinearity, i.e., the situation in which high
correlation among (2 or more) X variables inflates standard
errors and therefore biases significance tests

- Use the “Goodness of Fit” metrics and significance tests to
guer you toward a good model

: Unit Ill - Module 8 14
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|ldentifying a Multivariate Regression

y=a+b1X1+b2X2+...+kak+8

* In general, theory and sound reasoning should be
used to determine which variables to include in a
multivariate model

- Choose variables that are correlated with the dependent

variable and can be justified; i.e. show correlation and
causation

- ltis hard to ‘prove’ that a model is correctly identified, but
with correlation statistics and well developed reasoning, a
model can be shown to be robust

 If a relevant variable is omitted, it may cause b
estimates to be biased and will increase SSE
(“omitted variable bias”)

Unit lll - Module 8 15
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Coefficients in Multivariate Regression

y=a+bx; + bx, + ..+ b x

» The Excel output gives the predicted coefficients
Equation
Parameters

 Y=14+03X,
“11 X, +-02 X,

Example Multivariate Regression

b3 b2 b’ a
Coefficients -0.160 -1.126 0.251 1.372
Standard Errors 0.173 0.219 0.224 0.163
R*2, SE(y) 71.4% 0.178
F, DF 9.140 11

SSR, SSE 0.867 0.348
SR, MSE 0.289 0.032

Note: LINEST s numbers in ADJ RA2, SEE,CV  63.6% 0.178 16.1%

) T stats -0.92 -5.14 1.12 8.41
grra:y bOXI. Alna.IySt adds labels and Pvalues 0.3758  0.0003 0.2877  0.0000
other calculations. Significance F 0.0025

Unit 11l - Module 8 |<| 16
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Analysis of Variance (ANOVA)

* Mean Measures of Variation

15 data
points
- Mean Squared Error (or Residual)
(MSE): SsE
MSE =
n-k-1 where: /
- Mean of Squares of the Regression n = # data points
(MSR): . .
SSR k = # equation variables
MSR = B
3
The denominator for each of the Variables

above is called the degrees of
freedom, or df, associated with
each type of variation

e .
: Unit lll - Module 8 17
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Excel Demo: ANOVA

Total Sum of Squares (SST):
The sum of the squared deviations
between the data and the average

b2 b1
-1.126 0.251
0.219 0.224
0.178

Regression Sum of Squares

Residual or Error Sum of Squares
(SSR): ).

(SSE,

The sum of the squared F. DF The sum of the squared
deviations between the e deviations between the data
regression line and the SSR, SSE and the regression line

average
“The explained variation” MSR, MSE

ADJR"2, 5EE, CV

“The variation”

1

112
0.2877

T stats
P values
Significance

Note: df 4 is
provided. Df ., must

reg
be caclulated using
dfreg =n- dfresid

I : Unit IIl - Module 8 18
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Adjusted R?

+ Adjusted R?, or R?,, adjusts for degrees of freedom

- Can be used to compare coefficients of determination between
models with different numbers of variables including in the same
model when a variable is considered for elimination due to lack of
significance

- Can be used as justification for including near-significant variables in
models if those variable improve the model’s performance

R 2 _explained variation _SSR _ .~ SSE Warning: negative values of

— - R?, may occur when fitting
total variation SST SST on-OLS trends to data

R2_1— SSE n-1
’ SST A (n—1)-k
Tip: SSR+SSE=SST is true only in OLS. In

general, we have 0, i >
R? = 1.SSE/SST but not R = SSRISST. Note | 70 UNEXPlained penalty (> 1)

also that R?, can be negative,

: Unit lll - Module 8 19
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t statistics in Multivariate Regression

[
» In multivariate regression, a t test is conducted for each coefficient 15
+ The results provide insight as to which variables add the most value to the prediction of cost
- Adding additional variables will always decrease SSE and increase (unadjusted) R?
- Aninsignificant t statistic makes a variable a candidate to be eliminated from the regression (can
compare nested vs. full model using SEE, CV, adjusted R? and F statistics) !
- Avariable whose p value is greater than 0.5 should a/most certainly be eliminated because it is more
likely than not that its (nonzero) coefficient was observed by chance

Note: Correlation between the independent
y - a + ) + X + 8 variables may affect results. High correlation among
1 2 3 independent variables is often associated with
i b1 = multicollinearity and should be avoided. A
Coafficients 1196 @ 1372 corr«lelatipn métrix is a good firslt step to check for
Standard Errorns oo B Ot bt multicollinearity. The example is expanded later as
R~2, SE(y) 71.4% ohs an Advanced Topic.
F, DF 9.140 11
SSR, SSE 0.867 0.348 x1 x2 x3
MSR, MSE 0.289 0.032 x1 — 0.027 0.298
ADJ R~2, SEE, CV | 63.6% 0.178 16.1%
T stats -0.92 -5.14 1.12 8.41 x2 0.037 - -0.030
Pvalues < 0.3758 __ 0.0003  0.2877  0.0000 > w3 0.298 -0.020 -
Significance F 0.0025 \

The p-values suggest that X, is highly significant (as is the intercept, which is generally retained regardless of significance
results). The remaining variables are candidates for elimination.

1. There are several methoq,s.sQ‘ch as stepwise regression for determining the best subset of independent variables. See the references for more details

: Unit Il - Module 8 20
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Calculation of t statistic

» As before, the t statistic for each variable may
be calculated as ratio of the estimated
coefficient to the corresponding standard

error: b
t=—_
se,

* tis also the square rdot of the partial F .
statistic, F* t=+F
* SSRFuIIModeI B SSRReducedModeI SS (b| | a, blﬁ"'bbi—lﬂbi+19""bk)

F'= -
SSEFullModeI SSEFuIIModeI
df

df

Partial sum of squares -
captures the value of
adding the variable in

question

5 :
: Unit lll - Module 8 21
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The F statistic

* An Ftestis used to determine whether the coefficients of al/the
independent variables are zero
- Depends on the ratio of the MSR to the MSE, called an F statistic

y=a+bx, +byx,+ b3x3ﬁre all coefficients = 0? | Since 0.0025 < 0.05

We reject H,

b3 b2 b1 a Example Setup: | This regression as a
Coefficients 0,160 -1.126 0,251 1,372 || Seta=005 Wh°'e.is?f‘.ati5tti°a"y
Standard Errors 0.173 0.213 0.224 0.163 Hypothesis: signiiean
R"2, SE(v) 4% 0178 H,:b,=b,=b,=0
F, OF u H, :atleastone b, # 0
S5R, SSE 0.867 0,348 bt
MSR, MSE 0,289 0.032
ADJRAZ, SEE, O 63.6% 0178 16.1%
T stats 092 -514  L12 8,41
P values 0,375 00003 02877 00000 4 F : _ , _
significance F (0.0025 De———— || Doosiom: Y!:Srﬁigﬁtt}:g'é:;i;va'ue S

We conclude the regression is a good model as a whole. significance level (0.05)

Note, the results from the t test should still be addressed. |

Unit IIl - Module 8 22
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Paring Down the
Multivariate Regression Model

* You may have a model in which some of the coefficients are
significant, and some not
- Note: If only the y-intercept is significant, then it is not really a linear model, it
devolves down to a simple average
+ If the F statistic is significant, but only some of the t statistics
are, then you may be able to achieve a better model by
removing the non-significant variables
- Re-run the model with the least significant variable excluded
- Compare SEE, CV, F stat, and R?, for the two models
- Continue the above step until all coefficients are significant

- Compare goodness of fit and significance statistics across all models you've
seen. Using these, and sound engineering judgment, select the final model.

« Only the y-intercept may be non-significant ... in practice, it is used “as is” even if it is not
significant. This is important because without the y-intercept, OLS estimators are notBest
Linear Unbiased Estimators (BLUE).

Tip: Given logical relationship, near significance, and explained variation, it may be beneficial to keep non-
significant variables in a model. Such variables should only be retained if they improve d.f.- adjusted metrics

Unit Il - Module 8 I< 23
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t and F Summary

* The t statistics tell us if each independent
variable is a good predictor

* The F statistic tells us if the regression as a
whole is a good model

Note: In a regression with one independent variable,
the F test and t test will yield the same results

* In our example, the model was found to be
significant (large F), but two of the three
variables were not (small t)

’ Tip: If possible, test the resulting model on an independent data set. ‘

=y .
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Selecting the Best Model

Unit lll - Module 8
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Choosing a Model

 \We have seen what the linear model is, and
explored it in depth

* We have looked briefly at how to generalize
the approach to non-linear models

* You may, at this point, have several
significant models from regressions

- One or more linear models, with one or more
significant variables

- One or more non-linear models

Now we will learn how to choose the “best
model”

Unit IIl - Module 8
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Steps for Selecting the “Best Model”

* You should already have rejected all non-significant
models first
- If the F statistic is not significant

* You should already have stripped out all non-useful
variables and made the model “minimal”

- Variables that do not incrementally contribute to goodness of
fit, overall model significance, (adjusted) variation explained,
etc. were already removed

+ Select “within type” based on (adjusted) R2

- When comparing multivariate regression models, select
based on adjusted R2, which compensates for the number of
independent variables

» Select “across type” based on SSE (SEE for
multivariate models)

We will examine each in more detail... I

Unit lll - Module 8 27
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Selecting “Within Type”

 Start with only significant, “minimal” models

* In choosing among “models of a similar form”, R? is the
criterion

* “Models of a similar form” means that you will compare
- e.g., linear models with other linear models

Select the 2= 0.79 C|r =090
model with the 3 (‘,nl'/
highest R2 o
Power Weight
Select the

- e.g., power models with other power models model with the

® | R?=0.80 highest R?

Length Speed
Tip: If a model has a lower R?, but has variables that are more useful for decision<>

Cost >

makers, retain these, and consider using them for CAIV trades and the like

Unit IIl - Module 8 28
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Selecting “Across Type”

« Start with only significant, “minimal” models
* In choosing among “models of a different form”, the SSE
in unit space is the criterion (SEE if degrees of freedom
change; CV if dependent variables changes)
+ “Models of a different form” means that you will compare:
- e.g., linear models with non-linear models
- e.g., power models with logarithmic models
* We must compute the SSE by:
- Computing Y /in unit space for each data point
- Subtracting each Y from its corresponding actual Y value
- Sum the squared values, this is the SSE

* An example follows...

14

Warning: We cannot use R? to compare models of
different forms because the R? from the regression is
computed on the transformed data, and thus is
distorted by the transformation

Unit lll - Module 8 29
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Selecting “Across Type” Example

» Suppose we want to choose between the following
models for a method of estimating cost:

Option 1. Power Model Option 2. Linear Model

¥=1.14X03

N
o

y =0.35x + 0.13
R?=0.86

N

e
4

Ln(Cost)

o h
o oo~

The unit-space
SSE is the sum of
the squared

vertical distances

10

5
Weight Performance

SSE, =Y (Y -¥)’ @\ SSE, =3 (Y-¥)’ =83

We choose the power model because it has the lower unit-space
SSE (SEE if the two had different number of vars.)
Unit lIl - Module 8 30
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Comparing Nested Models Example

+ Suppose we want to choose between the following
models for a method of estimating cost:

b3 h2 b1 a b2 b1 a
Coefficients -160 -1.126 0.251 1.372 Coefficients -1.118 0.18%9 1.313
Standard Errors 0,173 0.219 0,324 0163 Standard Errors 0.217 0.213 0.149
R*3, SE(y) 71.4% 0178 R~2, SE(y) £9.2% 0,177
F, DF 9,140 11 F, DF 132.45 12
55R, S5E 0.867 0.348 S5R, 55E 0.840 0.375
MSR, MSE 0,289 [0 SR, MSE 0.280 0.031
ADJRAY, SEE, ADJRA2, SEE, O
Tstats -0,93 514 1.12 8.41 T stats -5.14 0.89 .80
P walues 0.3758 0.0003 0.2877 0.0000 P values 0.0003 0.3342 0.0000
Significance F significance F

» Reduced model eliminates the least significant variable (b;). We can
see by removing the least significant variable R?, SEE, CV,
significance F and adjusted R? all improve when b, is removed. A
(possible) next step would be to also eliminate b, and compare
again.

Unit Ill - Module 8 31
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Regression Summary

* Regression analysis is a powerful tool in cost
analysis, particularly for developing CERs

Two of the most important results of OLS
Regression are:

- Statistical significance

- Uncertainty

. This module has covered:
- The basic math behind the analysis

- How to interpret the results from a regression tool such as
Excel

- How to apply the results and choose among models
*  Many other regression techniques extend beyond
the scope of this module, but can be found in the
resources provided

Unit IIl - Module 8 32
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Resources - Textbooks

* An Introduction to Mathematical Statistics and It's Applications,
3rd ed., Richard J. Larsen and Morris L. Marx, Prentice Hall,
2000

» Applied Linear Regression Models, Neter et al., Irwin Inc., 1996

» Introductory Econometrics with Applications, R. Ramanathan,
Dryden Press, 1997

» Applied Regression Analysis, N.R. Draper and H. Smith, Wiley,
1998

» Regression Analysis by Example, S. Chatterjee, A. Hadi, and B.
Price, Wiley, 1999

» Regression With Graphics, L. Hamilton, Brooks/Cole Publishing,
1992

» Econometric Models and Economic Forecasts, R. Pindyck and
D. Rubinfeld, McGraw-Hill (College Division), 1997

» Using Econometrics - A Practical Guide, A. H. Studenmand,
Addison-Wesley, 2000

A GU/de to Econometrics, P. Kennedy, MIT Press, 1998
Unit Ill - Module 8 33
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Resources - Papers

* “The Multicollinearity Problem: Coping with the Persistent Beast”
Kevin Cincotta, David Lee, LMI, February 2007

+ “Modern Techniques of Multiplicative-Error Regression,” Steve
Book, SCEA, 2006

* “The Minimum-Unbiased-Percentage Error (MUPE) Method In
CER Development” Shu-Ping Hu, DoDCAS, 2001

* “Why ZMPE When You Can MUPE?” Dr. Shu-Ping Hu, Alfred
Smith, SCEA/ISPA, 2007

» “Testing for the Significance of Cost Drivers Using Bootstrap
Sampling,” Daniel I. Feldman, SCEA/ISPA, 2010

* “New Research in General Error Regression Model (GERM)
Significance Testing,” Kevin Cincotta, SCEA/ISPA, 2010

* “The Business Case for Bootstrapping: When You're Stuck with

Incomplete Data, Here's How You Make it Work!” Brett Gelso,
Glenn Grossman, Eric Druker

Unit IIl - Module 8 34
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Related and Advanced Topics

S
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Geometric Interpretations
Derivation of Formulae
White Test

ANOVA Redux

The Bivariate Normal Distribution
and the Geometry of Regression

Correction Factors
Multicollinearity
Non-OLS Models

Maximum Likelihood Estimation
Unit Il - Module 8 35

Geometric Interpretations

» Means = “center of gravity”

140
120
—s
100 F__j
X7 1
Y=8333 —pp*f====g === — - — === =44 _-M__
60
9
40 1 —
1
20 1
1
O T T T T T T
0 5 10 15 20 25 30 35
- X =23.89
5 : Unit 11l - Module 8 36
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Geometric Interpretations

* Deviations from mean sum to zero

. Unit Ill - Module 8 ' 37
I(@EAA . I |
L © 2002-2013 ICEAA All rights reserved.

Geometric Interpretations

* Lemma: Zn:(xi _YXYi —V)z Z XY, —nXY

140

120

100
Y = 83.33 o
60
40

20

0

0 5 10 15 20 25 30 35

X =23.89
= Unit Ill - Module 8 |< 38
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Geometric Interpretations

* Deviations from mean sum to zero

I
S

Y. Y

\2 —\?

Unit Il - Module 8 39
[GEAA ce8% Al
© 2002-2013 ICEAA All rights reserved.

Deriving the Equations

SSE(a,b) = Z(Y v, J = Zn:(a+in -Y, )

a‘:;zE_zzn: (a+bX;-Y,)= O:>ZY_an+bZX
i=1 i=1

OSSE 2zn: X.(a+bX,-Y,)=0

=
n 5 n
az X;+b) X => XY, =0
i=l1 i=l1 i=l1
25 Unit 11l - Module 8 40
I@EAA \_E'EBDK © 2002-2013 ICEAA Al rights reserved. I 4 |
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(T-asbXa-7 X

(\?-b?) X, FbYX -

b ixz Yixi =Zn:

=}

>

Deriving the Equations (cont'd.)

XY. =0

remember”

iYi —?Z Xi “easy to
i=1

“easy to\ i=l i=1 i=1
calculatb < izn:XiYi _ nY\?C/iZT(Xi _YXYi -Y

_Z;:xﬁ—nfz N i

I(JEAA '-"-EB.,K Unit Ill - Module 8 |< .

© 2002-2013 ICEAA All rights reserved.

White Test

Perform the regression as usual to generate squared errors (&?)
Regress €2 on each regressor, squared regressor, pairwise
crossproduct, and an intercept

- For 1 x: Regress on intercept, x ,x2

- For 2 x’s: Regress on intercept, X;, X,, X{2, X,2, and x;X,

- For 3 x’s: Regress on intercept, X;, X,, X3, X42, X52, X352, X;X5, X;X3, @nd X,X,

- For Ax’s: m+1 = C(k+2,2) = (k+2)(k+1)/2 (including intercept)
Calculate the R2 from the auxiliary regression
White statistic = nR? follows a chi square distribution with (m-1)
degrees of freedom where m = number of estimated
parameters (not including intercept) from auxifiary regression
Reject the null hypothesis of homoscedasticity and conclude
that OLS cannot be used if p-value is less than a specified
critical value a (say, 0.10)

Unit IIl - Module 8 42
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White Test Applied to Toy Problem

Data Calculations
X Y g X X
4 5 0.03 a 16
7 5 2.55 7 49
8 10 7.95 8 64
12 7 6.35 12 144
16 13 1.30 16 256
\_></
White Test
Auxiliary RA2: 0.79
White Stat: 3.93
DF: 1
p-value: < Q047 [>
Conclusion: UH-OH!
EEB K Unit 11l - Module 8 |< 43
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Sums of Squares Shortcuts

* These formulae are more computationally
efficient: n _n
- Total Sum of Squares (SST): ZY? Y ZYi
i=1 i=1

- Residual or Error Sum <, 2 - -
of Squares (SSE): ZYi o aZYi - bz XiYi
i=1 i=1 i=1

n _n
- Regression Sum b XY =X D)Y.
of Squares (SSR): (IZI: H .Zzll !
» Can you verify the identity using these?
SST = SSE + SSR

“total” = “unexplained” + “explained”

..—-'\‘ X
: Unit Ill - Module 8 44
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R? and Reducing CV

* We said that one of the goals of running CERs is to
reduce CV, and that R2 is the percent explained
variation

- But how are the two related?
- We can show that the reduction of CV is a function of R2

SSR
v, =Sl /SSiT v = SEE 1 SSE Rz SSR .~
YV SST

SSE n-—1
cV . = J1—R? #
redux \/ \/SST \/

0
Cvredux:SEE 240 ‘/ \/1 0.62 =0.71=208%

s, 3.36 43.3%

5 .
: Unit lll - Module 8 45
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Zero-Intercept R?

Warning: When the regression line is forced through the origin (0), R? and
R?, in the trendline can be different than in the LINEST or macro output

14.0
:12.0 ] 2 L/NEST(‘A:tion

$10.0 - . b 0.8072 0.0000k
580 , SEb Q1050 #N/A  SEa
$8.0 * * Series1 rRZ  (0.9368 2.4152SEE
$4.0 * % —— Linear {Seriez1} = 59.0874 Adf.
$20 SSR_ 344.6673  23.3327SSE
$-

SSE SSR
R’ =1-—— is preferred to R® =—— , because
SST SST
2

R? = ESTI; can only be used when SSR + SSE = SST Only the case for OLS

regression in fit space
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Leverage

» Leverage is a measure of how far an
observation is from the average values of all
he independent variables in the equation

e

An observation is considered
a potential outlier with respect
to X if its leverage value is
greater than 2*(p/n), where p
is the number of parameters
and n is the number of
observations.

Unit Il - Module 8 |< | 47
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Regression Distributions

Bivariate

Univariate I

Cost data

sums of squares

Chi Square

Variance | Chi Square / df

The assumption of normality
drives al/the other distributions

Points

I [ Chi Square / df1 J [ Chi Square / df2 }

F(df1, df2)

Unit IIl - Module 10 48
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The Geometry of Regression

» The following charts show the geometry of regression
by building up a picture
- The picture provides a mental image that aids in
understanding the regression equation
- This visual framework has potential applications in risk
analysis
» The below facts enable us to derive the picture
- For any two jointly distributed variables, there is a regression
line
* The slope is:
b=p*o,/0,)
* They intercept is:
a=p-p(0,/0,) " K,

- If the variables are joint bivariate normal, then p is the
correlation coefficient
’ Let’s look at the graph... I

5 .
: Unit lll - Module 8 49
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The Geometry of Bivariate Normality
and the implications for Regression
y First construct a
box 20 by 20
1 centered at the
means
20,
1+
C (K 1)
uy - X’Y"""""""’”"”””””””’"”‘: 2Oy
o |
] *y
a
o, i o,
T T T > X
- l“lx
: Unit lIl - Module 8 50
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The Geometry of Bivariate Normality
and the implications for Regression
Slope m varies with p, 0, G,
y
Dispersion varies with p y=p(0,/0,) (x- 1) + 1

p=1

A A

i ‘T
s W g p0

S 2 :

g _ 3 :

oo Ty |

Ty
. . p:-‘]

Intercept a varies with
slope, 1, and y, :
| Oy : O, R
T T T X
o~ Hy
: Unit IIl - Module 8 51
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The Geometry of Bivariate Normality
and the implications for Regression

Yy This line has the
“unseen” slope ...
1 The slope that would _
be trze ifp=1 y=p(0,/0,) (x- 1) + 1
p=.75

0-X

ws®
wns®
ann®
ws®
wns®
ws®

This line has the “seen”
slope ... given p=.75

Ky

./ﬂ\ Uni
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G@?’ A k i l I |
I [ : Ko © 2002-2013 ICEAA All rights reserved.

PTO04

26



Correction Factors

*  When converting CERs developed in log-linear space to not log-
linear space, the CER will predict closer to the median than the mean

ro = leverage
value in log
space if x, is a
vector of
independent
variables in the
data matrix

s = standard
error of the

n = sample
size

P = # of estimated
coefficients

Unit lll - Module 8 53
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Multicollinearity

* Multicollinearity occurs when there is a strong linear relationship among
two or more independent variables
- The model form of this linear relationship must match the model form of the
regression in order for multicollinearity to occur
* Some symptoms that multicollinearity may be occurring are:
- Large changes in the values of the regression coefficients when another
variable is added or deleted
- Regression coefficients having an opposite sign from what intuition predicts
- Two (independent) variables thought to be similar have large (in absolute
value) but “opposite” signs
- Variables expected to be significant are not
- A high overall R? with several non-significant independent variables
- High Variance Inflation Factors (VIFs) or Variance Amplification Factors
(VAFs)
» The existence of Multicollinearity has a couple of adverse effects on the
results of OLS:
- Biases coefficients and inflates their standard errors
« This in turn biases t-tests and p-values; also makes them imprecise
- Makes it difficult to understand the effect each independent variable has on
predicting the outcome

It is important to note that multicollinearity does not affect the reliability of the
model predictions; it simply biases individual coefficient values and their estimated
_§i,g‘niﬁcanoe.
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Multicollinearity

* One of the most robust methods to address multicollinelarity is to find the

VIF of each independent va

riable

« The VIF of an independent variable is defined as (1- Ru_ﬁz) where R,_’
is the coefficient of determination when the dependent variable g is
regressed against all other dependent variables

- The VIF of f is the multiplicative factor (>=1) by which the variance of § is

increased due to correlatio

n among the regressors

- Allinformation needed to compute the VIF for each variable is found as part of

Excel’s Linest() function
* Ingeneral, a VIF of over 10

indicates a severe enough problem to take a

second look. If no VIF exceeds 4, you may reasonably conclude that there
is no issue with multicollinearity.

* If multicollinearity is cloudin
removing the variable with t

g the results of a regression model, consider
he largest VIF and re-running the model,

understanding that the variable to be removed may be the intercept!
» Continue until no VIF exceeds 4 (ideally) or 10 (if desperate)

Note: VIFs may be calculated in
intercept regression, R, ; can't

However, the VIF can be also be calculated as SEBf/SEBJ native Where
SEBJ native = SEE?/[(n- DVar(X;)]

this manner in standard OLS regression. For zero-
be used because it assumes a constant term.

[@EAA FEBk
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Before removing multicollinearity

Regression Statistics

Notice neither

Multicollinearity - Example

» The VIFs for x1 and x2 are high,

2146718658  0.306108425 7.0129356 0.0004193

e R oorroseors . & indicating that multicollinearity is
Adjusted R Square  0.933538189 1ndependent Varlable 1S
gtsr\dar\: Error 3,3908772?; o .ﬁcal‘lt present

servations signi
ANOVA - This is further verified by scatter
Regression = 3 1453303271 4?550109 43.123704 S'?E'S?«"ﬁ?o@g plOttIng them together (See belOW)
Residual 6 68.9882902 11.498048
- E— By rerunning the regression with

Coefficients _ Standard Error t Stat P-value VIE* .

e ... ©8CH Of the variables removed,
x2 -0.856380194  3.226126284 -0.2654515|

Toassosuns the best regression is found

After removing multicollinearity

Regression Statistics
Multiple R _0.977328896 x2vs x1
RSquare  0.955171771
Adusted R 0.942363705 12
Standard £ 3.157722838
Observatior 10
ANOVA P
o ss S F Significance
Regression 2 1487.022505 743.6113 745758  1.00735E-05
Residual 7 69.79849467 9.971214
Total 9 1557.021
Coefficients _Standard Error _tStal__Pvalue ViF-
Tnfercept  1.489038566 247633097 0.601308  0.56659
1 2840039751 0353958217 8.023658 B.94E-05 1036596958
x3 2147881586 0285031425 7.535596 0.000133 1 =

*VIF’s were computed separately not as part of Excel ANOVA rest

[EEAA © Sl

ults
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Multicollinearity - Ridge Regression

» Ridge regression is one of several ways of regularizing a regression
model so that all the independent variables may remain in the analysis
- Should mainly be used when there is extremely high correlation between the
independent variables
* Inridge regression, a ridge variable is added to the SSE expression,
such that solutions with inflated SE; values are no longer optimal
» Advantages of Ridge Regression
- Reduces the standard errors of the estimated coefficients
- No independent variable is removed from the analysis
+ Disadvantages of Ridge Regression Warning: Ridge regression is
- Model estimates will be biased! trial-and-error intensive!
- Coefficients lose some of their interpretability

- Set the ridge too high, and estimates are biased beyond recognition (recall:
multicollinearity does not bias overall model estimates). Set it too low, and
the multicollinearity problem is not remedied.

Unit lll - Module 8 57
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A Very Brief Overview of Two Non-
OLS Regression Techniques

Weighted Least Squares Regression
Multiplicative Error Regression

*These slides are meant as a top-level overview of these techniques, not an
instruction guide. For more detailed information, seek the resources provided in the
Resources section.
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Non-OLS Regression Techniques
Weighted Least Squares

» Weighted Least Squares regression is similar to Ordinary
Least Squares in that it still works by minimizing the sum
squared error

- The difference is instead of treating the errors associated with the data points
equally, certain points are weighted

n n
Z(yi - f(xi))2 VS. zwi(yi - f(xi))z
i=1 i=1 1
- One common method is setting Wi to ok
» Thus giving higher weight to points with lower variance in measurement of the x’s.
When (and only when) this weighting convention is used, WLS estimators are
BLUE.
* WLS regression is useful in many cases

- To compensate for a violation of the homoscedasticity assumption of OLS
(funnel-shaped residual plots)

- When certain data points are believed to be more correct or applicable than
other data points
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Non-OLS Regression Techniques
Multiplicative Error Regression

* OLS seeks to minimize the additive error of the regression
- Y=axt+€&
* However, non-linear functions may exhibit multiplicative error instead
- Y= (axb) €
* When this is the case, multiplicative error techniques must be used
- Examples include MUPE and ZMPE
- Papers on these techniques are listed in a special section on the resources slide
When prediction intervals around OLS-transformed regressions are produced
they demonstrate a multiplicative error pattern as well

X

Multiplicative Error Additive Error

X
Unit IIl - Module 8 60
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Non-OLS Regression Techniques:
Maximum Likelihood Estimation

If you believe the function to be linear but still have issues
with heteroscedasticity, maximum likelihood estimation
(MLE) may be in order

This generalization of OLS accounts for non-constant
error term variances

MLE solutions reduce to OLS solutions when variance is
held constant, so MLE estimators are OLS estimators
when OLS assumptions hold

MLE estimators are asymptotically BLUE for large data
sets; even with heteroskedasticity, as long as other OLS
assumptions hold (e.g. zero-mean, normal i.i.d. error term)

If s is constant, log likelihood objective function = Z{In(1/c)
- €2/262} is maximized when SSE is minimized

Must specify o2 as a function of x

Other remedies for heteroscedasticity include generalized
least squares (GLS, a generalization of WLS) and
transformation to log space
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