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Abstract 
This paper discusses the pros and cons of using the log-error model versus the Minimum-

Unbiased-Percentage Error (MUPE) model for cost estimating relationship (CER) development.  
Further, we discuss a very common and incorrect interpretation of the log-error CER result: it is 
commonly assumed to be the mean of a log-normal distribution, which is proven to be wrong.  The 
theoretical derivations of two available correction factors (Goldberg, PING) to adjust for the mean 
in unit space for log-error models are discussed accordingly.  We also show that the Goldberg 
equation outside the data range generates counter-intuitive and inappropriately low results by 
comparing three commonly implemented log-linear equations: the Goldberger, the PING Factor, 
and the uncorrected equations. 

 
Multiplicative error terms are commonly used in the cost analysis field because experience tells 

us that the error of an individual observation (e.g., cost) is generally proportional to the magnitude 
of the observation (not a constant).  The log-error model is a popular way to generate these types of 
CERs because ordinary least squares (OLS) can be accomplished in log space if the fitted equation 
is log-linear.  However, the log-linear CER will be biased low when transformed back into unit 
space; it will predict closer to the median (not the mean) of the CER risk distribution in unit space.  
Therefore, correction factors are required to adjust the CER result to produce the mean in unit 
space. 

 
The MUPE regression model is an alternative method to hypothesize the multiplicative error in 

a CER.  All of the Unmanned Space Vehicle Cost Model, Eighth Edition (USCM8) CERs 
(Reference 5) have been developed using MUPE.  The MUPE method involves an iterative, 
weighted least squares regression that provides unbiased percentage error regression results.  No 
transformation or adjustment (to correct the bias in unit space) is needed for fitting a MUPE 
equation. 

Introduction 
For many CERs, the error of an individual observation (e.g., cost) is approximately 

proportional to the magnitude of the observation.  In such cases, it is appropriate to hypothesize a 
multiplicative error term for the CER.   

 
Several optimization techniques have been used to model multiplicative errors over the years.  

One common practice was to work in log space by taking natural logs of both the dependent 
variable and the equation form.  When the transformed equation is linear in log space, OLS can be 
applied to derive a Best Linear Unbiased Estimator (BLUE) in log space, which is also the 
Maximum Likelihood Estimator (MLE) in log space.  If the equation form is not log-linear, the log 
transform can still be used to model a multiplicative error, but the optimization will be non-linear 
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least squares.  Although the mean and median are the same for the log-linear CERs in log space, 
when transforming the equation back to unit space the mean and median differ.  The unit space 
CER predicts closer to the median instead of the mean.  Therefore, the direct translation of the 
equation back to unit space tends to underestimate the mean value of the original population. A 
multiplicative correction factor (introduced as the “PING Factor” at Reference 6 in 1988) is used to 
adjust the CER result to more closely reflect the mean in unit space. 

Log Error Model. The multiplicative error model is generally stated as follows: 
 

iii fY ε),( βx=       for i = 1, …, n (1) 
 
where: 
 n = sample size 
 Yi = observed cost of the ith data point, i = 1 to n 
 f (xi,β) = the value of the hypothesized equation at the ith data point 
 β = vector of coefficients to be estimated by the regression equation 
 xi = vector of cost driver variables at the ith data point 
 εi = error term 
 

If the multiplicative error term (εi) is further assumed to follow a log-normal distribution, then 
the error can be measured by the following: 
 

)),(ln()ln()ln( βx iiii fYe −== ε  (2) 
 
where “ln” stands for nature logarithmic function.  The objective is then to minimize the sum of 
squared eis (i.e., (Σ(ln(εi))2).  If the transformed function is linear in log space, then OLS can be 
applied in log space to derive a solution for β.  If not, we need to apply the non-linear regression 
technique to derive a solution.  
 

Although a least squares optimization in log space produces an unbiased estimator in log space, 
the estimator is no longer unbiased when transformed back to unit space (see References 1, 2, and 
4).  However, the magnitude of the bias can be corrected with a simple factor if the errors are 
distributed normally in log space (see References 1 and 2).  Because of this shortcoming, the 
MUPE method is recommended for modeling multiplicative error directly in unit space to produce 
unbiased estimators. 

The MUPE Method.  The general specification for a MUPE model is the same as given above 
(Equation 1), except that the error term is assumed to have a mean of 1 and variance σ2.  Based 
upon this assumption of a multiplicative model, a generalized error term is defined by: 
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where ei now has mean of 0 and variance σ2. 
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This percentage error differs from the traditional percentage error in the denominator, where 
MUPE uses predicted cost instead of actual cost as the baseline.  The optimization objective is to 
find the coefficient vector β that minimizes the sum of squared eis: 
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Tecolote Research, Inc. has proposed a MUPE regression technique to solve for the function in 

the numerator separately from the function in the denominator (see References 2 and 5).  This is 
done through an iterative process. 
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where k is the iteration number and the other terms are as defined previously. 
 

The weighting factor of each residual in the current iteration is equal to the reciprocal of the 
predicted value from the previous iteration.  Since the denominator in Equation (5) is kept fixed 
throughout the iteration process, the MUPE technique turns out to be a weighted least squares with 
an additive error.  The final solution is derived when the change in the estimated coefficients (β 
vector) between the current iteration and the last iteration is within the analyst-specified tolerance 
limit.  This optimization technique (Equation 5) is commonly referred to as Iteratively Reweighted 
Least Squares (IRLS; see References 8 and 9). 

PROS AND CONS OF MUPE AND LOG-ERROR MODELS 
Model developers must decide the best way to model the error of their equation, choosing 

either the MUPE model or the log-error model.  Here are a few advantages of using the MUPE 
method: 
• The MUPE CER has zero proportional error for all points in the database (no sample bias).   
• No transformation or adjustment (to correct the bias in unit space) is needed for fitting a 

MUPE equation. 
• Goodness-of-fit measures (or asymptotic goodness-of-fit measures) can be applied to judge 

the quality of the model under the normality assumption.   
• The MUPE CER produces consistent estimates of the parameters and the mean of the 

equation.   
• The estimated parameters using the MUPE method are also the maximum likelihood 

estimates (MLE) of the parameters (by Matthew Goldberg, 2001). 
A disadvantage of using the MUPE model is that it relies on the non-linear optimization 
technique to achieve a solution, which can be cumbersome.  See the detailed descriptions of the 
MUPE method in References 2 and 3. 
 

The following concerns have been raised about using the log-error model (Equation 2): 
1. Errors are not expressed in meaningful units (i.e., ln(εi)s are in log of dollars).   
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2. Minimizing Σ(ln(εi))2 is not the same as minimizing Σ(εi)2.  As a result, the standard error of 
estimate (SEE) derived in log space for log-linear CERs cannot be compared with the SEE in 
unit space for non-linear regression equations. 

3. We must choose power form CERs to use the log-error assumption.   
4. The resultant equation will be biased low when transforming back to unit space.  To obtain 

an unbiased estimate, we need to multiply the CER by a correction factor to estimate the 
mean in unit space. 

 
Although these concerns all appear to be legitimate, we think only the last one on the list is a 

valid concern; the other three are not.  We will address these concerns in the order given above.  
We understand that log-errors (Equation 2) are not expressed in dollars as units.  However, the log-
errors have an interesting interpretation: ln(εi) can be viewed “approximately” as a percentage error 
by Taylor series expansion.  It actually matches the MUPE definition of percentage error: 
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Although minimizing Σ(ln(εi))2 is not the same as minimizing Σ(εi)2, this is not a problem 

because we hypothesize a multiplicative model (Equation 2), not an additive one.  As a general 
rule, the measure of SEE in fit space (a fit measure) cannot be compared across different models.  
We should not compare the fit measures between two models if they are developed using different 
fit criteria.  For example, comparing the SEEs between an additive model and a multiplicative 
model is meaningless because one model minimizes the sum of squared absolute errors while the 
other minimizes the sum of squared percentage errors. 

 
Now let us address the third concern on the list.  Of course, we have to choose “log-linear” 

equations if we want to apply OLS to fit equations in log space.  However, we are not forced to use 
OLS.  To model the cost variation, we should (1) hypothesize a CER form based upon good logic 
and solid technical grounds and (2) choose an appropriate error term assumption.  Note that the 
choice of the CER form should not drive the error term assumption and vice versa.  If the 
regression equation cannot be solved linearly, we will apply the non-linear optimization technique 
to generate a solution.  For example, if a fixed cost term is guided by the engineering judgment and 
errors are assumed to be scaled with the project, we can certainly hypothesize this equation form, 
a + bXc, with a multiplicative error term to explain the cost variation.  In this case, we need to use 
the non-linear regression technique to derive a solution. 

 
The last one on the list has been a very common concern for years.  Although a least squares 

solution is unbiased in log space, the resultant CER is no longer unbiased when transforming back 
to unit space.  This is the most important reason why the MUPE method is suggested for modeling 
multiplicative errors in unit space (to avoid the use of correction factors to adjust for the mean). 

 
Despite the valid concern that the resultant equation is biased low in unit space, the log-error 

model is still quite popular when modeling multiplicative errors.  The reasons are given below: 
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• If the hypothesized equation is log-linear, e.g., y = axbε, then the regression can be done in 
log space linearly, which does not involve an iterative process.  In this case, we have the 
following advantages: 
− The traditional goodness-of-fit measures can be applied to judge the quality of the fit in 

log space. 
− The outliers can be easily identified for further scrutiny. 
− The prediction intervals can also be easily derived. 
Obviously, the above advantages are all restricted to “log-linear” models.  They are no longer 
valid for non-linear CERs, such as y = (axb + c)ε. 

• The standard error of estimate in log space (SEEL) can be regarded as a measure of a 
percentage error at a certain given x level in unit space, i.e., SEEL ≅ CoVA at a given x level.  
Note that CoVA denotes the coefficient of variation in unit space expressed as a percentage.  
This approximation is derived by applying Taylor series expansion to the ratio of Equation 14 
over Equation 12.  See Reference (1) for details. 

• The log-error can be viewed approximately as the MUPE percentage error (see Equation 6). 
 

Based upon the above discussions, it appears that the MUPE method is superior to the log-error 
model.  In addition, its error term assumption is more generic.  Nonetheless, the choices between 
the MUPE and log-error models should depend upon the error term assumption:  
• Choose MUPE if the error term (ε) is associated with a mean of one and variance of σ2. 
• Choose log-error model if ε follows a log-normal distribution with a mean of zero and variance 

σ2 in log space, i.e., ε ~ LN(0, σ2). 
 
The real purpose of using a CER is for predicting a future cost.  The impact of applying 

correction factors to log-error CERs might be more severe than we originally thought when the 
prediction is outside the database.  We will begin the discussion by introducing the correction 
factors and the related theory. 

DERIVATION OF CORRECTION FACTORS 
Theories for Log-Linear Models.  Let us hypothesize a log-linear equation with a 
multiplicative error term as given in Equation 1: 
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where: 

εi's are independently, identically distributed (i.i.d.) random variables associated with a log-
normal distribution with mean of 0 and variance σ2 in log space, i.e., LN(0,σ2), 
βo, β1, ..., βk, and σ2 are unknown parameters, 
x1i, x2i, ..., xki are the independent variables for the ith data point, and 
k is the total number of independent variables in the model. 

 
The above model can be equivalently stated as 
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The dependent variable in log space (ln(Yi)) now follows a normal distribution because ln(εi) is 
distributed as N(0,σ²).  Therefore, at a given x value, say x = xo = (x1o, x2o. . . , xko), the conditional 
distributions of Y in both log and unit space are given by Equation 9 and Equation 10, respectively: 
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Where µo = βo + Σ βj ln(xjo) 
 

It follows from Equation 9 that the conditional mean and median value of Y (in log space) at 
this given value, xo, are both equal to µo: 
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However, it can be easily shown by Equation 10 that the conditional mean, median, and 
standard deviation of Y (at the given xo) in unit space are given respectively by the following 
equations: 
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(Note: If a random variable Y is distributed as LN(µ, σ2), then E(Y) = exp(µ+σ2/2), Median(Y) = 
exp(µ), and Var(Y) = (E(Y))2(exp(σ2)-1).)  Furthermore, the mode of Y at the given xo is neither 
the mean nor the median: 
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Therefore, the term eσ²/2 can be regarded as a factor explaining the difference between µA and MA: 
 

)2/exp( 2σµ =AA M  (16) 
 

It is clear from Equation 16 that the direct translation of the solution from log space to unit 
space is not a good estimator of the population mean, µA, if the difference between mean (µA) and 
median (MA) is not negligible.  Therefore, we have the following conclusion: 
 

 
The log-linear equation will be biased low if we do not apply correction factors. 
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Procedure.  In the following paragraphs, we will illustrate the procedure of developing 
correction factors.  We will also prove (1) the log-linear CER in unit space (denoted byŶ ) 
follows a log-normal distribution (see Equation 19) and (2) the variance of this predictor depends 
on the location of the driver variables.   
 

To compute the mean and standard deviation of Ŷ , let us first introduce a variable ro: 
 

ro = ln(xo)(X’X)-1 ln(xo)t (17) 
where: 

ln(xo) = (1, ln(x1o), ..., ln(xko)), a row vector of given driver values in log space and 1 is for 
the intercept 

X = design matrix in log space 
(The superscript t denotes the transpose of a vector or a matrix.) 

 
For simplicity, the letter X is also used to denote the data matrix in log space.  Note that ro is 

the so-called leverage value in log space if xo is a vector of independent variables in the data 
matrix.   Both the mean and standard deviation of Ŷ (at the given xo) are functions of ro.  To be 
more specific, the standard deviation of a future prediction in log space is equal to roσ2 (see 
Equation 18).  In a one-independent variable case, the value of ro is given by  
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It is clear that the variable ro captures the sample size and the distance of the estimating point from 
the center of the database in terms of the sample standard deviation of the driver variable. 

 
If the classical assumptions hold as explained in Equation 7, the OLS method can generate an 

unbiased estimator for the dependent variable in log space.  This OLS predictor of Y in log space 
(at the given xo) follows a normal distribution because it is a linear combination of the normally 
distributed ln(Y1), ln(Y2),..., and ln(Yn): 

 
)r,()r,(ln~ˆ)ln()/ˆln( 2
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2

o σµσ NNY === β)(xβxxx ooo  (18) 
where: 

β = (βo, β1, ..., βk)t, a column vector of the unknown coefficients 
β̂  = (X’X)-1X’(ln(Y)), the OLS solution for β 
ln(Y) = (ln(Y1), ln(Y2),..., ln(Yn))t, a column vector of Y in log space 
ln(xo) = (1, ln(x1o), ..., ln(xko)), µo = ln(xo)β, and ro are all given above 

 
Note that the mean and variance of )/ˆln( oxx =Y are derived by matrix algebra (see Reference 9) 
and clearly the variance of this predictor is driven by the location of the data point. 
 

By definition, therefore, the distribution of the direct translation of Equation 18 into unit space 
follows a log-normal distribution: 
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Based upon Equations 19, the mean, median, and standard deviation of Ŷ , at a given xo vector, 

are given by Equations 20, 21, and 22, respectively: 
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And the net correction factor for estimating the mean value in unit space at the given xo vector 

is the ratio between Equation 12 and Equation 20: 
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Illustrations of Simple Cases.  Let us use two simple examples to illustrate Equation 23.  In the 
univariate case, where Y1, Y2, …, Yn are i.i.d. random variables associated with LN(µ,σ2), the 
estimator of the mean is equal to ))ln(exp( Y . The distributions of )ln(Y and ))ln(exp( Y  are given 
by Equation 24 and Equation 25, respectively: 
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It follows from Equation 25 that E( ))ln(exp( Y ) = exp(µ + σ2/2n).  Thus, for predicting the 

population mean (i.e., exp(µ + σ2/2)), the net correction factor for Ŷ  (i.e., ))ln(exp( Y ) can be 
expressed as 
 

exp(σ2/2) / exp(σ2/2n) = exp((1 – 1/n)σ2/2) (26) 
 
The first term in Equation 26 indicates that the mean is underestimated by exp(σ2/2), which can 
be regarded as a transformation bias. The second term in Equation 25 indicates that the median is 
overestimated by exp(σ2/2n), which can be regarded as a sampling bias. 
 

For the one independent variable model when x = xo, the predicted values of Y in log space and 
unit space are given by Equations 27 and 28, respectively: 
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βο and β1 are the unknown coefficients; oβ̂  and 1β̂  are their estimated coefficients, 
SSx is the sum of squared deviation of the driver variable about its mean in log space, 

)ln(x  is the average of the independent variable in log space, and 
xo is a given x value. 

 
The expected value of the prediction when x = xo is then given by 
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When Equation 30 is compared to Equation 12, the net correction factor forŶ at the given xo is  
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Unbiased Correction Factor (Goldberger’s Factor).  In the following section, we will 
demonstrate that the net correction factor, Goldberger’s correction factor (GF) can be expressed 
as 

( ) ( )2)r1(exp2)r1( 2
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2
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The function g is defined below (see Equation 33).  Let us use s to denote “standard error of 

estimate” in log space.  Although the estimator of the population variance σ2 (in log space) is s2, 
the statistic exp(s2/2), on average, tends to overestimate the unknown factor exp(σ2/2): 
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Note that the inequality in Equation 31 is based upon Jensen’s inequality.  Hence, it is necessary 
to develop a function to generate an unbiased estimator for the net correction factor given in 
Equation 22.  Such a function, g, is given below: 
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where p is the total number of coefficients to be estimated and n is the sample size. 
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The above-defined function g has the following property: 

 
2

))(( 2 σaesagE =     for any real number a (34) 
 
(See Reference 1 for math derivations of Equation 34.)  Hence, Goldberger suggests that we use 
Equations 35 and 36, respectively, as the unbiased estimators for the mean and median in unit 
space: 
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The last term in Equation 35, which is to be multiplied to the CER, is the so-called net 
correction factor for the mean or Goldberger’s correction factor (GF).  For simplicity, this factor 
can be approximated by the following term: 
 

( ) ( )2)r1(exp2)r1( 2
o

2
o ssgGF −≅−=  (37) 

 
This theoretical correction factor (Equation 37) suggested by Goldberger is a variable factor.  It 
should be evaluated point by point and multiplied to the log-error CERs to obtain the theoretical 
mean in unit space (see Equation 35).  This process is tedious and can get very cumbersome 
when more independent variables are introduced into the CER.  

The PING Factor.  The PING Factor (PF) is given by 
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Since ro (in Equation 37) has to be evaluated at each different x level, Equations 35 and 36 are 

of little realistic use.  We suggest using “p/n” as an approximation of ro for any given x value, 
where p is the total number of estimated coefficients and n is the sample size.  This way, the 
correction factor for the mean (to be multiplied to the CER) can be simplified as given below: 
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n
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Equation 38 is commonly referred to as the PING Factor.  The term p/n in the equation above 

is the expected value of ro. In other words, we use the mean leverage value to approximate ro as if 
xo is sampled randomly from the sample population as xi’s in the log transformed data matrix.  The 
proof is given by evaluating the value of ro in the “Hat” matrix.   

 
Let X denote the design matrix in log space as given in Equation 17.  If xo is a column vector in 

the log space data matrix, then ro is simply the corresponding diagonal element of the n by n 
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symmetrical “Hat” matrix H (= X(X’X)-1X’).  Since H is a square, idempotent matrix (i.e., H*H = 
H), the trace of H is equal to its rank, which is the number of estimated coefficients.  (The trace of 
a square matrix, by definition, is the sum of its diagonal elements.)  Therefore, the mean value of ro 
is the mean value of diagonal elements of the Hat matrix H, i.e., the number of estimated 
coefficients divided by the sample size. 

 
It is clear that the PING Factor is a general correction for the level of the function; it is 

evaluated within the range of the database.  Compared to Goldberger’s Factor, the PING Factor is 
a handy, constant correction factor for the entire equation.  In most situations (when n gets 
sufficiently large and s is moderately small, say < 0.8), the PING Factor can be further 
approximated by 
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 (39) 

 
This simplified PING Factor (Equation 39) is a good approximation of the theoretical one 

(Equation 38) for most cases (see Reference 2 for details).  However, the difference between 
Equations 38 and 39 can be one percent or more if the sample size is small and/or standard error of 
estimate is fairly large.  For example, if n = 6, p = 2, and s = 0.95, then the simplified PING Factor 
is 1.35 while the theoretical PING Factor is 1.33.  In most applications with moderate standard 
error of estimates, we recommend using the simplified PING Factor. 

 
Just as Goldberger’s Factor, the first term in the PING Factor is used to adjust the downward 

bias between the mean and the median, which can be regarded as a transformation bias. As for the 
second term in Equation 39, it is used to adjust the upward bias for estimating the median.  This 
bias can be regarded as a sampling bias because it vanishes as the sample size approaches infinity.  
Some analysts wonder why the PING Factor gets bigger when the sample size increases while the 
values of s and p remain fixed (see Equation 39).  This is because the sampling bias (for estimating 
the median) gets smaller for a larger sample.  We only need to adjust the transformation bias 
between the mean and median when the sample size approaches infinity or gets sufficiently large. 

SENSITIVITY ANALYSIS 
Now let us examine the value of ro in Equation 37.  As defined in Equation 17, it is given by 

 
ro = ln(xo)(X’X)-1 ln(xo)t  

 
This value should be greater than or equal to zero because ro is part of the variance of the 

predictor at a given xo in log space (see Equation 18).  It is also bounded above by one if xo is a 
vector in the data matrix.   However, this restriction (ro ≤ 1) no longer exists if xo is not within the 
data range.  In other words, the value of ro can be larger than one if it is evaluated outside the data 
range.  In this case, Goldberger’s correction factor (i.e., g((1- ro)s²/2) or exp((1–ro)s²/2) is less than 
one. When this happens, Goldberger’s equation produces an estimate that is actually smaller than 
the uncorrected equation!  As shown by Equation 31, the further the driver variable moves away 
from the center of the database, the smaller (in magnitude) the correction factor becomes due to 
increased leverage value.  In learning curve analysis, the “unbiased” first unit cost 
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(i.e., 2/)r1(β̂ 2
o see o − ) may be even less than 1% of the “uncorrected” first unit cost (i.e., oeβ̂ ) due to 

the huge downward correction of the median for the first unit cost (i.e., T1).  This kind of unbiased 
T1, as well as many other unbiased estimates for predictions outside the data range, are suspiciously 
low and hence should not be considered useful. 
 

In mathematical terms, the ratio between the theoretical unbiased Goldberger’s Factor 
(Equation 37) and the PING Factor (Equation 38) is given by 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≅−−

2
)r(exp)

2
)1(()

2
)r1((

2

o

22

o
s

n
ps

n
pgsg  (40) 

 
As explained above, this ratio can be substantially different from one if ro is evaluated outside 

the data range.  Let us examine whether the PING Factor is a good substitute for the Goldberger 
Factor for the points within the data range.  A one-independent-variable model will be used as an 
illustrative example.  Goldberger’s Factor reaches its maximum at the center of the database in log 
space, and it decreases when moving away from that point.  As given in Equation 31, when the 
distance between the independent variable and the center is within one sample standard deviation 
(evaluated in log space), Goldberger’s equation is higher than the equation multiplied by the Ping 
Factor (i.e., the PING Factor equation).  Goldberger’s equation lies below the Ping Factor equation 
when the independent variable moves away from this range. 

 
For the purpose of illustration, we chose a power equation with eight data points and a fairly 

large standard error of estimate (0.5).  We noticed the average difference between the Goldberger 
and PING Factor equations is about 1% for the points within the data range, increasing to a couple 
of percent towards the boundaries of the data points.  However, when the independent variable 
deviates about 30% beyond the boundaries, there is a cross-over between Goldberger’s equation 
and the uncorrected equation.  If the standard error of estimate is 0.5 or larger, Goldberger’s 
equation decreases very rapidly when the independent variable moves further and further away 
from the boundaries, which makes the projection quite uncertain.  We illustrate three equations in 
the graph in Figure 1: the unbiased Goldberger’s equation, the PING Factor equation, and the 
uncorrected equation (with no correction factors applied).  Figure 2 illustrates these equations 
when 0.8 is chosen as the standard error of estimate and the driver variable has a smaller exponent 
than that of Figure 1. 
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Figure 1: Comparing a Log-Linear CER with the Goldberger and PING Factor Equations 

Using 0.5 as the Standard Error in Log Space 
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Figure 2: Comparing a Log-Linear CER with the Goldberger and PING Factor Equations 

Using 0.8 as the Standard Error in Log Space 



The Impact of Using Log-CERs Outside the Data Range and PING Factor 
Tecolote Research, Inc. 

 

SCEA Conference - June 2005  Page 14 14

Based upon the above graph, if the independent variable represents weight in pounds, then the cost 
of a 5000-pound “box” is cheaper than the cost of a 3000-pound “box” using the Goldberger 
equation.  This is certainly counter-intuitive and very doubtful.  

CAUTIONARY NOTES IN PREDICTION 
Some references consider exp(β0) to be representative of the level of the (conditional) median 

for the entire function.  This could be very misleading if the intercept term (when the driver 
variables are set at one) is far away from the mass of the data points.  In this circumstance, the 
variance in the estimate of the intercept can be very large, larger in fact than the population 
variance of the regression line.  Using the median value of Y at the intercept (e.g., the first unit cost 
in learning curves) to correct the upward bias of the median for the entire equation in unit space 
can cause the corrected function to lie outside the range of the data set.  This practice should be 
avoided because Goldberger’s Factor should be evaluated point by point. 

 
The primary use of a CER is to make future predictions based on future driver values, which 

may or may not be in the CER data range.  However, the use of a CER for extrapolation is always 
risky, especially for log-error models.  Given the wide availability of computers, analysts may use 
Goldberger’s equation for prediction even if the future x value lies outside the data range.  But if 
the future prediction is far away from the center of the database, Goldberger’s equation will not 
produce a logical or intuitively correct result as illustrated above, especially when the standard 
error of estimate is moderately large.  This pitfall is a big concern when using log-linear CERs. 

 
Generally, the PING Factor should be applied to all equations fit in log space by re-specifying 

each equation's constant term as the product of its original constant and the correction factor.  
However, exercise caution if dummy variables are used to stratify observations with different 
attributes (e.g., airborne versus ground-based antennas).  A CER's predictive capability may not be 
improved by applying one adjustment factor to two or more different populations if the individual 
sample variances associated with these different categorical data are not equal.  In theory, these 
different populations should have similar variances (and similar slope parameters) in order to be 
analyzed in one equation with dummy variables just to differentiate the intercept term.  However, 
for small samples, it is often hard to find sufficient evidence to reject the null hypothesis that the 
variances are equal.  A more detailed discussion of the PING Factor and the derivation of Equation 
34 can be found in Reference 1. 

CONCLUSIONS 
The log-error model and MUPE model are two popular techniques used to hypothesize the 

multiplicative error term in the CERs.  If the multiplicative error term follows a log-normal 
distribution in unit space, then the use of log-error model is appropriate.  If the multiplicative error 
term is symmetrical around one with a mean of one and variance of σ2, then choose the MUPE 
method.  Therefore, the choices between the MUPE and log-error models should be based upon the 
error term assumption. 

 
There are pros and cons associated with different fitting techniques.  The advantages of using 

the log-error model are given below: 
• If the hypothesized equation is log-linear, e.g., y = axbε, then the regression can be done in 

log space linearly under the logarithmic transformation.  As a result, this process is an OLS 
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in log space and all the goodness-of-fit measures can be evaluated in that space.  This 
advantage does not exist if the CER has a non-linear functional form in unit space but it 
cannot be transformed to a linear equation in log space. 

• The standard error of estimate in log space (SEEL) can be regarded as a measure of a 
percentage error at a certain given x level in unit space, i.e., SEEL ≅ CoVA at a given x level.  
Note that CoVA denotes the coefficient of variation in the unit space expressed as a percentage.  
See Reference (1) for details. 

• Log-errors (Equation 2) can be viewed approximately as the MUPE percentage error. 
 

The disadvantages of using the log-error model are summarized below: 
• It involves a two-step process. First, we need to transform both the dependent and independent 

variables to perform OLS in log space.  After developing the CER in log space, we need to 
transform the results back to unit space. 

• We need to derive a correction factor (by either Goldberger’s method or the PING Factor) to 
adjust the unit space CER result to obtain an unbiased estimate, since the CER result is closer 
to the median than the mean in unit space.  This is yet another extra step. 

• We must be extremely cautious when the future prediction lies outside the data range.  
Goldberger’s Factor is not recommended when the driver variables are outside the 
range of the data used to create the CER.  

• The PING Factor is easier to use, just as accurate as the Goldberg Factor within the data 
range, and far more suitable outside the data range (although care must be taken). 

 
Here are some salient points when using Goldberger’s Factor or the PING Factor to achieve the 

unbiased estimate in unit space for log-linear CERs: 
• Goldberger’s Factor (Equation 36) and the PING Factor generally match each other very 

closely within the data range.  There are two terms involved in both factors: one is for 
adjusting the downward bias between the mean and the median (a transformation bias); the 
other is used to adjust the upward bias for estimating the median (a sampling bias).   

• Goldberger’s Factor is a variable factor.  It should be evaluated point by point and 
multiplied to the log-error CERs for the entire function in order to obtain the theoretical mean 
in unit space.  This process is tedious, as shown in Equations 35 and 36; it can become very 
cumbersome when more independent variables are introduced into the equation. 

• The PING Factor is a handy, constant factor, which is used to adjust the level of the entire 
function. 

• A common misuse of Goldberger’s Factor is to derive an adjustment at some extreme point, 
such as T1, and then multiply it to the entire equation.  This practice employs the corrected 
equation well outside the majority of the data points and should be avoided. 

• The PING Factor and MUPE equations match each other closely in most cases (Reference 3). 
• The PING Factor should be used with caution if dummy variables are specified in the 

equation.  This is because a constant correction factor (i.e., the PING Factor) may not be 
adequate to correct the downward bias for two or more populations with “possible” unequal 
variances. 

• When making a prediction outside the data range, the theoretical unbiased Goldberger Factor 
should be used with caution because this factor may be considerably less than one when the 
prediction lies outside the data range. 
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