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Abstract

Estimating the cost of a system under development is essentially trying to predict the future, which 
means that any such estimate contains uncertainty.  A portion of this uncertainty is described by the 
“standard error of the estimate” of a cost-estimating relationship (CER), which is basically the standard 
deviation of errors made (the “residuals”) in using that CER to estimate the (known) costs of the systems
comprising the historical data base.  The standard error of the estimate depends primarily on the extent 
to which those (known) costs fit the CER that purports to model them.  However, additional uncertainty 
arises from the location of the particular cost-driver value (x) within or without the range of cost-driver 
values for programs comprising the historical cost data base.  For example, if x were located near the 
center of the range of its historical values, the CER would provide a more precise measure of the 
element’s cost than if x were located far from the center of the range.  The total uncertainty in the 
estimate can then be expressed in terms of prediction bounds that involve both sources of uncertainty.

The first kind of uncertainty, represented by only one number characteristic of the CER, is fairly 
easy to measure for any CER shape or error model.  The second kind, which involves both the CER itself 
and the value of the cost-driving parameter, however, is more complicated, and the way to calculate it is 
completely understood only in the case of classical linear regression, i.e. “ordinary least squares” (OLS).  
As a result, explicit formulas exist for “prediction intervals” that bound cost estimates based on CERs
that have been derived by applying OLS to historical cost data. For CERs derived by other statistical 
methods, there appears to be no general method of solution described in the theoretical statistical 
literature.  This presentation demonstrates the application of bootstrap random sampling, a 28-year-old 
statistical process, to the problem of estimating prediction bounds for multiplicative-error CERs and 
other CERs derived by non-OLS methods.  After the bootstrap method is shown to yield prediction 
bounds that approximate the known OLS bounds fairly well, it is applied analogously to non-OLS-
derived CERs.  Although statistical sampling can yield only approximations to the “true” prediction 
bounds, the bootstrap technique appears to be a practical and theoretically credible method of 
approaching this currently unsolved estimating problem.
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Error Sources of CER-Based
Cost Estimates

1. Inability of Any CER to Account for All Influences 
on Cost, No Matter How Many Inputs it Allows    

2. Incorrectness of Algebraic CER Model to which 
Cost Numbers in Data Base are Statistically Fit
– Explicit CERs are Derived from Historical Cost Data by 

Minimizing a Quality Metric, Often the Standard Error of the 
Estimate (SEE), that Depends on the Algebraic Model

– SEE is an Estimator of “True” Standard Deviation σ of “Errors”
in the Knowledge Base of Historical Cost Data Points, 
Assuming the Algebraic Model is Correct

3. Location of Cost Driver Value x among Parameter 
Values Comprising Historical Cost Data Base
– If x is Located Near Center of Range of Parameter Values, CER 

will Provide More Precise Estimate of the System’s Cost
– If x is Located Far From Center of Range, CER-based Estimate 

will be Considerably Less Precise
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State of the Art in 
CER-Based-Estimating

• Ordinary Least Squares (OLS)
– Model Cost as an Additive-Error Linear Function of One or More Cost 

Drivers
– Estimating Problem is Completely Solved
– Explicit Algebraic Formulas Exist for the Upper and Lower Bounds on 

the Cost (“Prediction Intervals”) for Any Value of Cost-Driving 
Parameter at Any Level of Confidence

– Width of Prediction Interval Depends on Both the CER’s Standard Error 
of the Estimate (SEE) and the Location of the Cost-Driver Value x

• Special Nonlinear CER Forms
– Model Cost as One of a Particular Class of Nonlinear Functions
– Such Nonlinear Forms Can be Made OLS-Solvable by an Algebraic 

Transformation (usually Logarithmic of a Multiplicative-Error Model)
– Non-Optimal Prediction Intervals Can be Calculated in a Roundabout 

Way by Applying an Inverse Transform
• General Nonlinear CER Forms

– Model Cost Using Any Additive- or Multiplicative-Error, Linear or 
Nonlinear Functional Form

– Standard Error of the Estimate Can be Calculated, as Well as Some 
Information About Variances of the Coefficients

– But Prediction-Interval Problem Appears Not to Have Been Solved
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Bounding the Cost of an Element
of the Program You’re Estimating

• For CERs Derived by OLS Regression, the 
Prediction Interval for the Actual Cost Y is 
Based on the Estimated Cost Ŷ and the SEE in 
the Following Way: 

• The Degree of Confidence Associated With this 
Interval is (1-α)100%, Enforced by Choice of the 
“Percentage Point of the t Distribution,”
Namely tα/2,n-2
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Prediction Bounds Calculated by
the OLS Statistical Formula

80% Prediction Bounds for CER-Based Estimates
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The Bootstrap Sampling Approach 
when a Formula is Unavailable

• While We Wait for the “Exact” Theoretical Solution 
to be Found for non-OLS CERs (which, if history is 
a guide, could take decades), It Would be Useful to 
Have Available a Practical “Ad Hoc” Method that 
We Can Apply to Generate Prediction Intervals in 
Any Particular Case

• “Bootstrap” Statistical Sampling Appears to be an 
Appropriate Technique to Consider

– The Bootstrap Method of Error Estimation was Introduced 
by B. Efron in 1977 and Has a 28-Year History Behind It

– It is a “Distribution-Free” Method, so It Does not Require 
the Usual (and questionable) Distributional Assumptions, 
e.g., Normal or Lognormal Error Distributions or even 
Homoscedasticity

– It Works with Additive- or Multiplicative-Error Models and 
all Algebraic Functional Forms
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The Bootstrap Philosophy

• The Bootstrap Philosophy Parallels the Philosophy 
of OLS and General-Error Regression

• It Assumes that …
– The Relationship between y (Cost) and x (Cost-Driving 

Parameter) is Exactly the Algebraic Relationship that is 
Being Modeled 

– The x Values are Known Precisely, but “Actual” y Values 
are Known Accurately Only within Some Statistical Error 
Distribution

• The Error Distribution Depends on How Well the Algebraic 
Relationship with x Accounts for the Various Influences on y

• The Set of “Residuals” (namely, the differences between 
“estimated” and “actual” costs) Represents the Distribution 
of Error in the Actual y Values
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A Major Consequence of 
the Bootstrap Philosophy

• The Combined Assumptions of the Bootstrap 
Philosophy Imply that the Residual that Happens to 
be Matched with any Particular x Value is Merely a 
Matter of Chance

• Residuals are Assumed to be Randomly (i.e., equally 
likely) Selected from an (unknown) Error Distribution

– In OLS this Error Distribution is Assumed to be the Normal
– Bootstrapping Does Not Require the Normal Distribution –

its Error Distribution is Defined Solely by the Residuals 
• So if We Had Collected Our Data in a Different Way or 

at a Different Time, We Might have Obtained Any One 
of the Residuals for Any of the x Values

• Therefore, if We Randomly Choose a Residual for 
Each x Value, We Will be Able Construct a Set of y
Values that Could Very Well Have Been the “Actual”
y Values  
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What is Bootstrap Sampling?

• Bootstrap Sampling is a “Resampling” Method
• Random Samples are Taken, not from a Probability 

Distribution, but from the Set of Residuals
– Residuals are Calculated from the Actual Data Base with which 

We are Working (not from an assumed probability distribution 
such as the normal or lognormal)

– Bootstrap Theory Assumes that Each of the n Residuals (n = 
number of data pairs) has Probability 1/n of Being the Residual 
Associated with any Given x Value

– This Assumption Requires Sampling “with Replacement,”
because a Residual’s Association with One x Value Does not 
Preclude its Association with Another in the Same Data Set

– Only the Probability 1/n is Hard-wired into the Process
• Many Sets of n Sample Residuals are Generated

– Then a New Data Set (“the Bootstrap Sample”) that “Could Have 
Been” the Actual Data Set is Calculated from Each Set of n
Sample Residuals

– Next, a “CER” that “Could Have Been” the Real CER is 
Calculated from Each Bootstrap Sample
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Prepare Data Base for Bootstrap 
Sampling – Calculate the Residuals
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Draw Random Samples
of Residuals
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Compute Bootstrap Samples of 
“Possible” Actual y Values

Note: Each bootstrap sample is treated as if it were a set of “actual” data.  
The only use made of the The only use made of the realreal actual data set is to calculate the estimates actual data set is to calculate the estimates 
and residualsand residuals.
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Use Each Bootstrap Sample to 
Calculate an OLS “CER”
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Graphs of 255 Bootstrap “CERs”

255 OLS Bootstrap CERs
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Use Each Bootstrap CER to 
Estimate Cost at Various x Values
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Rank All 255 Estimates Associated
with Each Cost-Driver Value x

Lower 10th

Percentile

Upper 10th 

Percentile
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Interpolate, if Necessary, to Find 
10th and 90th Percentile Estimates

Note: The 10th percentile of the estimates at any value of x serves
as the lower 80% bootstrap bound, and the 90th percentile serves 
as the upper 80% bootstrap bound.  80% of the bootstrap estimates
lie between those two numbers. 
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Can We Derive Prediction Bounds
from Bootstrap Bounds?

• It Turns Out that the “Bootstrap Bounds,” namely 
the 10th and 90th Percentile Bootstrap Estimates, 
for any Given x Value  are Closer Together than 
the Known 80% Lower and Upper OLS Prediction 
Bounds

• After some Theoretical Investigations and 
Numerical Experimentation, We Found that 
Adjusting the OLS Bootstrap Bounds Outward by 
an Additive Amount Equal to the SEE of the 
“Real” CER Brought the so-called “Bootstrap-
Based” Bounds Closer to the OLS Prediction 
Bounds
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Lower 80% Bootstrap-Based Bounds 
vs. OLS Prediction Bounds

Note: “B-BB” = Bootstrap-Based Bounds”Note: “B-BB” = Bootstrap-Based Bounds”
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Upper 80% Bootstrap-Based Bounds 
vs. OLS Prediction Bounds
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Bootstrap-Based Bounds as
Ersatz Prediction Bounds

Bootstrap-Based vs. OLS Prediction Bounds
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Apply Analogous Adjustment
in Other Contexts

• Prediction-Bound Formulas Do Not Exist in 
Any Other Cost-Modeling Context

• The “B-BB = BSB*± StdError” Adjustment 
Seems Pretty Good in the OLS Case

• So Let’s Agree to Use that Adjustment for 
All Additive-Error-CER Scenarios

– It Won’t Yield “Exact” Prediction Bounds (we don’t know 
what those are yet!)

– But It’ll Have to Do Until the Real Thing Comes Along
• Then Extend the Analogy to Multiplicative-

Error CERs, i.e., 
– First Apply Percentage Adjustment to Each Estimate
– Then B-BB(y) = BSB(y) ± (%StdError)×ESTy
– This Makes Sense, because the Term “Percentage 

Standard Error” Refers to a Percentage of the Estimate
* “BSB” = “Bootstrap Bounds”
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Common CER Forms

• y = Cost
x = Technical Parameter (Cost Driver)

• Factor CER:  y = ax
Linear CER: y = a + bx
“Nonlinear” CERs: y = axb

y = abx

y = a + bxc

• a, b, c are Constant Coefficients Derived from 
Historical Data

• Although We Will Discuss the Case of Only One 
Cost Driver per CER, the Concepts are the Same 
for Multiple Cost Drivers, but the Mathematics is 
More Complicated
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General-Error Regression

• OLS Offers the Opportunity to Derive Only Two 
Kinds of CERs

– Linear (and Other Polynomial) Additive-Error CERs
– Log-Linear Multiplicative-Error CERs

• In 1974, R.W.M. Wedderburn Established “Iteratively 
Reweighted Least Squares” (IRLS) as a Technique 
for Deriving …

– Unbiased CERs
– Multiplicative-Error CERs
– CERs Having Arbitrary Functional Form y = f(a,b,c)

• In 1998, the “Minimum Percentage Error - Zero 
Percentage Bias” (MPE-ZPB) Technique was 
Introduced to Yield CERs that also Had Minimum 
Possible Percentage Error among all Unbiased 
CERs of the Functional Form being Considered  
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Minimum-Percentage-Error, 
Zero-Percentage-Bias CERs

• Experience and Theory Indicates that IRLS CERs 
Do Not Necessarily Have Minimum Possible 
Standard Error among all Zero-Bias CERs

• IRLS CERs Maximize “Quasi-Likelihood” – They 
do not Minimize Percentage Error 

• MPE-ZPB Technique Pursues the Minimum-
Percentage-Error Goal Directly

– Computes Minimum-Percentage-Error CER, Subject to 
Constraint that Percentage Bias be Exactly Zero

– CERs Derived Using “Constrained Optimization” – Another 
Capability of Excel Solver

• Minimize                                                  Subject to 

the Constraint
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CER Example: Antenna Cost vs.
Reflector Diameter
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Case 1: Multiplicative-Error Factor 
CER y = ax×ε Using MPE-ZPB

• Minimum-Percentage Error CERs, Subject to the 
Constraint that Percentage Bias be Zero

• Minimize the Sum of Percentage Squared Errors

Subject to the Constraint that the Percentage Bias 
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Analysis of the Bias Expression

• We First Rearrange the Equation B(a) = 0:

• It then Follows that

• This is the Mathematical Form of the MPE-ZPB 
Factor CER’s Constraint 
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Deriving the “Factor” a in the
CER  y = ax×ε

• The Constraint that Percentage Bias be 
Zero is Expressed Mathematically as

• This Expression Leads Uniquely to the 
MPE-ZPB Numerical Value of the 
Coefficient a, which is

• No Optimization Using Excel Solver is 
Needed in this Simple Case
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Dollars-per-Foot Data Base for 
MPE-ZPB Factor CER
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MPE-ZPB Factor CER and its Quality 
Metrics Superimposed on Data Base
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MPE-ZPB Factor CER Percentage 
Residuals (= Actual÷Estimate)
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Table of Bootstrap y Values, with
MPE-ZPB Bootstrap Factor CERs
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Graphs of 255 Bootstrap
MPE-ZPB Factor CERs

255 Bootstrap IRLS/MPE-ZPB CERS
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For Each CER, Estimate Cost at Each
of a Range of Cost-Driver Values
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Rank All 255 Estimates Associated
with a Cost-Driver Value of x
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Bootstrap-Based Prediction-Interval
80% Bounds for Factor CER
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Precision of Estimate Over Range 
of Possible Cost-Driver Values

80% Bootstrap-Based Prediction Bounds
(MPE-ZPB Factor CER y = 0.637x )
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Case 2: Multiplicative-Error Linear
CER y = (a+bx)×ε Using MPE-ZPB
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MPE-ZPB Linear CER Details
for Diameter-vs.-Cost

• Based on Computations on the Historical Data …

• Linear Multiplicative-Error CER

• Percentage Standard Error of the Estimate
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(Average 38.00% Across the Data Range)
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MPE-ZPB Linear CER and Its Quality 
Metrics Superimposed on Data Base

Diameter vs. Cost MPE-ZPB Linear Relationship
(y = -6.4701+1.1801x )
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Linear CER Percentage Residuals
(= Actual÷Estimate)

Note: Estimated y Values are Calculated Using the MPE-ZPB
Linear Regression Equation y = -6.4701+1.1801x.
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Graphs of 255 Bootstrap
MPE-ZPB Linear CERs

255 Bootstrap MPE-ZPB Linear CERs
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Bootstrap-Derived Prediction-Interval
80% Bounds for MPE-ZPB Linear CER
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80% Prediction Bounds Over Range
of Possible Cost-Driver Values

80% Bootstrap-Based Prediction Bounds
(MPE-ZPB Linear CER y = -6.4701+1.1801x )
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80% Prediction Bounds for “Small”
Values of the Cost Driver x

80% Bootstrap-Based Prediction Bounds
 (MPE-ZPB Linear CER y = -6.4701+1.1801x ) 
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Case 3: Multiplicative-Error Power 
CER y = axb×ε Using MPE-ZPB

• Based on MPE-ZPB Computations on the Historical 
Data Using Excel Solver …

• Multiplicative-Error CER

• Standard Error of the Estimate (%SEE)

6934.1b;1037.0a ==

y = 0.1037x1.6934

( ) 4345.09439.0
27

1
bxa

bxay
2n

1Error Standard
n

1i

2

i

ii =
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−−

−
= ∑

=
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MPE-ZPB Power CER and Its Quality 
Metrics Superimposed on Data Base

Diameter vs. Cost MPE-ZPB Power Relationship
(y = 0.1037x^1.6934 )
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Power CER Percentage Residuals
(= Actual÷Estimate)

Note: Estimated y Values are Calculated Using the MPE-ZPB
Power Regression Equation y = 0.1037x1.6934.
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Use Each Bootstrap Sample to
Derive a Power CER Using MPE-ZPG
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Graphs of 255 Bootstrap
MPE-ZPB Power CERs

255 Bootstrap MPE-ZPB Power CERs
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Bootstrap-Derived 80% Prediction 
Bounds for MPE-ZPB Power CER

Note: Bootstrap Prediction  Bound = Bootstrap Bound ± %SSE*Esty
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Precision of Estimate Over Range 
of Possible Cost-Driver Values

80% Bootstrap Prediction Bounds
(MPE-ZPB Power CER y = 0.1037x^1.6934 )
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80% Prediction Bounds for “Small”
Values of the Cost Driver x

80% Bootstrap Prediction Bounds
 (MPE-ZPB Power CER y = 0.1037x^1.6934 )
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Case 4: Multiplicative-Error Triad
CER y = (a+bxc)×ε Using MPE-ZPB

• Based on Computations on the Historical Data …

• Multiplicative-Error CER

• Standard Error of the Estimate (%SEE)

y = -236.11 + 212.42x0.06
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MPE-ZPB Triad CER, Quality Metrics 
Superimposed on Data Base

Diameter vs. Cost
MPE-ZPB Triad Relationship for Ground Antennas

(y = -236.11+212.42x^0.06 )
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MPE-ZPB Triad CER Percentage 
Residuals (= Actual÷Estimate)
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Bootstrap Sampling of 
MPE-ZPB Residuals
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Use Each Bootstrap Sample to 
Calculate an MPE-ZPB Triad CER

Note: Bootstrap y Value = Estimated y Value × Sample Residual
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For Each CER, Estimate Cost at Each
of a Range of Cost-Driver Values
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Graphs of 255 Bootstrap
MPE-ZPB Triad CERs

255 Bootstrap MPE-ZPB Triad CERs
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Rank All 255 Estimates Associated
with a Cost-Driver Value of x
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Bootstrap-Derived Prediction-Interval 
80% Bounds for MPE-ZPB Triad CER
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Precision of Estimate Over Range 
of Possible Cost-Driver Values

80% Bootstrap-Based Prediction Bounds
(MPE-ZPB Triad CER y = -236.110+212.422*x^0.057 )
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80% Prediction Bounds for “Small”
Values of the Cost Driver x

80% Bootstrap-Based Prediction Bounds
(MPE-ZPB Triad CER y = -236.110+212.422x^0.057 )

-10

-5

0

5

10

15

20

4 6 8 10 12 14 16
Cost-Driver Values

Es
tim

at
ed

 C
os

ts

Actual Data Points
80% Upper Bounds
MPE-ZPE Triad CER
80% Lower Bounds



© MCR, LLC

Summary

• Explicit Formulas Exist for Prediction Intervals 
Corresponding to OLS-Derived Linear CERs

– These Intervals Can be Reproduced Fairly Well by Adjusting 
Bounds Derived by Bootstrap Sampling 

– For General-Error CERs, Algebraic Expressions for Prediction 
Bounds Do Not Appear to be Available

• Although Theoretical Research in this Direction May 
be Worthwhile and May Lead to Future Algebraic 
Solutions, There is a Need to Estimate Prediction 
Bounds Right Now

• While We Await the “Exact” Solution, the Bootstrap 
Sampling Technique Appears to Offer an Opportunity 
to Compute Prediction Bounds for Any Specific CER

– By Analogy with the OLS Adjusted Bootstrap Bounds
– Provides Solution on a “One-Time-Only” Basis for Each CER, 

Rather than via an Algebraic Formula of Wide Applicability
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Acronyms

B-BB Bootstrap-Based Bounds
BSB Bootstrap Bounds
CAIG Cost Analysis Improvement Group
CER Cost-Estimating Relationship
EST Estimated
FY Fiscal Year
IC Intelligence Community
IRLS Iteratively Reweighted Least Squares
K Thousands (usually of dollars)
MPE-ZPB Minimum Percentage Error – Zero Percentage Bias
NCG NRO Cost Group
NRO National Reconnaissance Office
OLS Ordinary Least Squares
SEE Standard Error of the Estimate
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