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Estimating the cost of a system under development is essentially trying to predict the future, which
means that any such estimate contains uncertainty. A portion of this uncertainty is described by the
“standard error of the estimate” of a cost-estimating relationship (CER), which is basically the standard
deviation of errors made (the “residuals”) in using that CER to estimate the (known) costs of the systems
comprising the historical data base. The standard error of the estimate depends primarily on the extent
to which those (known) costs fit the CER that purports to model them. However, additional uncertainty
arises from the location of the particular cost-driver value (x) within or without the range of cost-driver
values for programs comprising the historical cost data base. For example, if x were located near the
center of the range of its historical values, the CER would provide a more precise measure of the
element’s cost than if x were located far from the center of the range. The total uncertainty in the
estimate can then be expressed in terms of prediction bounds that involve both sources of uncertainty.

The first kind of uncertainty, represented by only one number characteristic of the CER, is fairly
easy to measure for any CER shape or error model. The second kind, which involves both the CER itself
and the value of the cost-driving parameter, however, is more complicated, and the way to calculate it is
completely understood only in the case of classical linear regression, i.e. “ordinary least squares” (OLS).
As a result, explicit formulas exist for “prediction intervals” that bound cost estimates based on CERs
that have been derived by applying OLS to historical cost data. For CERs derived by other statistical
methods, there appears to be no general method of solution described in the theoretical statistical
literature. This presentation demonstrates the application of bootstrap random sampling, a 28-year-old
statistical process, to the problem of estimating prediction bounds for multiplicative-error CERs and
other CERs derived by non-OLS methods. After the bootstrap method is shown to yield prediction
bounds that approximate the known OLS bounds fairly well, it is applied analogously to non-OLS-
derived CERs. Although statistical sampling can yield only approximations to the “true” prediction
bounds, the bootstrap technique appears to be a practical and theoretically credible method of
approaching this currently unsolved estimating problem.
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Error Sources of CER-Based

Cost Estimates

1. Inability of Any CER to Account for All Influences
on Cost, No Matter How Many Inputs it Allows
2. Incorrectness of Algebraic CER Model to which

Cost Numbers in Data Base are Statistically Fit

— Explicit CERs are Derived from Historical Cost Data by
Minimizing a Quality Metric, Often the Standard Error of the
Estimate (SEE), that Depends on the Algebraic Model

— SEE is an Estimator of “True” Standard Deviation ¢ of “Errors”
in the Knowledge Base of Historical Cost Data Points,
Assuming the Algebraic Model is Correct

3. Location of Cost Driver Value x among Parameter

Values Comprising Historical Cost Data Base

— If xis Located Near Center of Range of Parameter Values, CER
will Provide More Precise Estimate of the System’s Cost

— If xis Located Far From Center of Range, CER-based Estimate
will be Considerably Less Precise
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State of the Art In

CER-Based-Estimating

e Ordinary Least Squares (OLS)

— Model Cost as an Additive-Error Linear Function of One or More Cost
Drivers

— Estimating Problem is Completely Solved

— Explicit Algebraic Formulas Exist for the Upper and Lower Bounds on
the Cost (“Prediction Intervals™) for Any Value of Cost-Driving
Parameter at Any Level of Confidence

— Width of Prediction Interval Depends on Both the CER’s Standard Error
of the Estimate (SEE) and the Location of the Cost-Driver Value x

« Special Nonlinear CER Forms

— Model Cost as One of a Particular Class of Nonlinear Functions

— Such Nonlinear Forms Can be Made OLS-Solvable by an Algebraic
Transformation (usually Logarithmic of a Multiplicative-Error Model)

— Non-Optimal Prediction Intervals Can be Calculated in a Roundabout
Way by Applying an Inverse Transform

e General Nonlinear CER Forms

— Model Cost Using Any Additive- or Multiplicative-Error, Linear or
Nonlinear Functional Form

— Standard Error of the Estimate Can be Calculated, as Well as Some
Information About Variances of the Coefficients

— But Prediction-Interval Problem Appears Not to Have Been Solved
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*. Bounding the Cost of an Element

~ of the Program You're Estimating

 For CERs Derived by OLS Regression, the
Prediction Interval for the Actual Cost Y is
Based on the Estimated Cost Y and the SEE in
the Following Way:

A 1 —x)
¥+t *SEE|1+1+ (XY

| " T

=1

« The Degree of Confidence Associated With this
Interval is (1-a)100%, Enforced by Choice of the
“Percentage Point of the t Distribution,”

Namely 7, .,
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Cost Estimates (y)

© MCR, LLC

Prediction Bounds Calculated by
the OLS Statistical Formula

80% Prediction Bounds for CER-Based Estimates

® Actual Data Points
—— Upper 80% OLS Prediction Bounds
—— CER-Based Cost Estimates
—— Lower 80% OLS Prediction Bounds
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. The Bootstrap Sampling Approach

when a Formula is Unavailable

 While We Wait for the “Exact” Theoretical Solution
to be Found for non-OLS CERs (which, if history is
a guide, could take decades), It Would be Useful to
Have Available a Practical “Ad Hoc” Method that
We Can Apply to Generate Prediction Intervals in
Any Particular Case

« “Bootstrap” Statistical Sampling Appears to be an
Appropriate Technique to Consider
— The Bootstrap Method of Error Estimation was Introduced
by B. Efron in 1977 and Has a 28-Year History Behind It

— It is a “Distribution-Free” Method, so It Does not Require
the Usual (and questionable) Distributional Assumptions,
e.g., Normal or Lognormal Error Distributions or even
Homoscedasticity

— It Works with Additive- or Multiplicative-Error Models and
all Algebraic Functional Forms
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« The Bootstrap Philosophy Parallels the Philosophy
of OLS and General-Error Regression

e It Assumes that ...

— The Relationship between y (Cost) and x (Cost-Driving
Parameter) is Exactly the Algebraic Relationship that is
Being Modeled

— The x Values are Known Precisely, but “Actual” y Values
are Known Accurately Only within Some Statistical Error
Distribution

e The Error Distribution Depends on How Well the Algebraic
Relationship with x Accounts for the Various Influences on y

 The Set of “Residuals” (namely, the differences between
“estimated” and “actual” costs) Represents the Distribution

of Error in the Actual y Values
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A Major Conseqguence of

the Bootstrap Philosophy

« The Combined Assumptions of the Bootstrap
Philosophy Imply that the Residual that Happens to
be Matched with any Particular x Value is Merely a
Matter of Chance

* Residuals are Assumed to be Randomly (i.e., equally
likely) Selected from an (unknown) Error Distribution
— In OLS this Error Distribution is Assumed to be the Normal

— Bootstrapping Does Not Require the Normal Distribution —
its Error Distribution is Defined Solely by the Residuals

e So iIf We Had Collected Our Data in a Different Way or
at a Different Time, We Might have Obtained Any One

of the Residuals for Any of the x Values
 Therefore, if We Randomly Choose a Residual for

Each x Value, We Will be Able Construct a Set of y
Values that Could Very Well Have Been the “Actual”

y Values
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. * What is Bootstrap Sampling?

 Bootstrap Sampling is a “Resampling” Method

« Random Samples are Taken, not from a Probability
Distribution, but from the Set of Residuals

— Residuals are Calculated from the Actual Data Base with which
We are Working (not from an assumed probability distribution
such as the normal or lognormal)

— Bootstrap Theory Assumes that Each of the n Residuals (n =
number of data pairs) has Probability 1/n of Being the Residual
Associated with any Given x Value

— This Assumption Requires Sampling “with Replacement,”
because a Residual’s Association with One x Value Does not
Preclude its Association with Another in the Same Data Set

— Only the Probability 1/n is Hard-wired into the Process

« Many Sets of n Sample Residuals are Generated

— Then a New Data Set (“the Bootstrap Sample”) that “Could Have

Been” the Actual Data Set is Calculated from Each Set of n
Sample Residuals

— Next, a “CER” that “Could Have Been” the Real CER is
Calculated from Each Bootstrap Sample

© MCR, LLC 12



=, Prepare Data Base for Bootstrap

Sampling — Calculate the Residuals

x Values y Values | Predicted y Values | Residuals =
(Cost Driver) |(Actual Costs)| (Cost Estimates) |Actuals-Estimates
7.9 3.595 3.699 0.104
8.2 1.900 4.005 2.105
9.8 3.300 5.635 2.335
11.5 10.900 7.367 -3.533
16.4 15.434 12.358 -3.076
19.7 16.074 15.720 0.354
23.6 17.274 19.693 2.419

Note: CER derived from x and actual y values is y =« + bx, where «
= -4.348 and b =1.0187.
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ﬁ_ Draw Random Samples

of Residuals

X Values
(Cost Residual #l # #3 # # #
Driver) | Samples:
1.9 1st Residual | 0.104 | 2105 | 2.335 | -3.533 | -3.076 | 2.419
8.2 |2ndResidual | 0.354 | 2.419 | 0104 | 0.354 | 2.335 | 2419
9.8 3rd Residual | 0.104 | -3.533 | -3.533 | 2.105 | 2.335 | 0.354
11.5 | 4th Residual | 2.419 | -3.533 | 2.419 | 2419 | 2.105 | 2.419
16.4 | 5th Residual | 2105 | 2105 | -3.533 | 2.105 | 0.354 | 0.354
19.7 | 6th Residual | 2105 | -3.533 | 2.105 | 2.105 | 2.419 | -3.076
23.6 | Tth Residual | -3.533 | 2.419 | 0.354 | 0.104 | 2.419 | 0.104

Note: Sampling is done "with replacement”, so some residuals will appear more thar
once in the same sample.
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Compute Bootstrap Samples of

“Possible” Actual y Values

X Values | Bootstrap Actual=
(Cost Driver)| Estimate + Residual

19 3.699+1st Residual | 3.804 | 5.804 | 6.034 | 0.166 | 0.624 | 6.118
82 | 4005+2nd Residual | 3.651 | 6.424 | 4109 | 3.651 | 6.340 | 6.424
98 5.635+3rd Residual | 5.739 | 2102 | 2102 | 7.740 | 7.970 | 5.281
115 | 7.367+4th Residual | 9.785 | 3.833 | 9.785 | 9.785 | 9.472 | 9.785
164 | 12.358+5th Residual | 14.463 | 14.463 | 8.825 | 14.463 | 12.004 | 12.004
19.7 | 15.720+6th Residual | 17.825 | 12187 | 17.825 | 17.825 | 18.139 | 12.644
236 | 19.693+7th Residual | 16.159 | 22.112 1 19.339 | 19.797 | 22.112 | 19.797

Note: Each bootstrap sample is treated as if it were a set of “actual” data.
The only use made of the real actual data set is to calculate the estimates
and residuals.

AR | B M| BB
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Use Each Bootstrap Sam

Calculate an OLS “CER”

x Values Bootstrap Actuals = Estimate + Residual
(Cost Driver) #1 #2 #3 #4 # #
7.9 3.804 5804 | 6034 | 0166 | 0.624 | 6.118
8.2 3.651 6.424 | 4109 | 3.651 6.340 | 6.424
9.8 5.739 2102 | 2102 | 7.740 | 7.970 | 5.281
1.5 9.785 3833 | 9785 | 9785 | 9472 | 9.785
16.4 14.463 | 14.463 | 8.825 | 14.463 | 12.004 | 12.004
19.7 17.825 | 12187 | 17.825 | 17.825 | 18.139 | 12.644
23.6 16,159 | 22112 | 19339 | 19.797 | 22112 | 19.797
¢ (Intercept) 2598 | 4862 | 4044 | 5330 | 4866 | 0.739
b (Slope) 0.923 1.040 | 0.992 1.140 1140 | 0.795
r 0.943 0899 | 0919 | 0960 | 0962 | 0.954
r Squared 88.86% | 80.86% | 84.49% | 92.15% | 92.50% | 90.92%
Std Error of Estimate | 2.193 3.393 | 2.851 2233 | 2179 1.686
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.~ Use Each Bootstrap CER to

Estimate Cost at Various x Values

Cost Driver Bootstrap Cost Estimates (p Values)
(x) Values 1 2 3 4 5 6
5 2.017 0.337 0.916 0.372 0.836 3.238
7.9 4.693 3.352 3.793 3.679 4.142 5.544
8.2 4.970 3.664 4.091 4.022 4.484 5.783
9.8 6.446 5.327 5.678 5.846 6.309 7.055
10 6.631 5.535 5.876 6.074 6.537 7.214
11.5 8.015 7.095 7.365 7.785 8.247 8.407
15 11.245 10.734 10.837 11.777 12.238 11.191
16.4 12.537 12.190 12.226 13.373 13.835 12.304
19.7 15.583 15.621 15.499 17.137 17.597 14.929
20 15.860 15.933 15.797 17.479 17.940 15.168
23.6 19.182 19.676 19.368 | 21.585 | 22.044 18.031
25 20474 | 21131 20,757 | 23.182 | 23.641 19.144
30 25.089 | 26.330 | 25.717 | 28.884 | 29.342 | 23.121
35 29703 | 31529 | 30.677 | 34.586 | 35.043 | 27.098
40 34.317 | 36.727 | 35.638 | 40.289 | 40.745 | 31.074
45 38.932 | 41926 | 40598 | 45.991 46.446 | 35.051
50 43.546 | 47.125 | 45.558 | 51.694 | 52.147 | 39.028
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Lower 10t
Percentile
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Rank All 255 Estimates Associlated

Upper 10t
Percentile

%
<
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: with Each Cost-Driver Value x
o
Estimate Ranks | x=5 | x=15 | x =50 Estimate Ranks| x=5 | x=15 | x =50
1 3.021  8.583  30.604 226 2.861 11970 52.659
2 2.434 8586  30.629 227 2942  11.971  52.908
3 2.387 8.805  32.750 228 2,951  11.975 52.953
4 2381 8918  32.791 229 2,989 | 11.977 | 53.272
5 2.378  9.057  32.913 230 2,989 | 12.009  53.285
6 2311 9.096 @ 32.922 231 3.008  12.014 53.289
7 2112 9.108  33.173 232 3.012  12.069 53.303
8 2100 9273 34.280 233 3.042 12073 53.346
9 -1.889 = 9.301  34.672 234 3.045  12.080 53.437
10 -1.889 = 9.352 = 34.862 235 3.205  12.084 53.455
11 -1.848  9.3%0  35.151 236 3238  12.098  53.493
12 -1.717  9.426 35517 237 32564 12103 53.535
13 -1.681  9.534  36.022 238 3289 12110 53.752
14 -1.680  9.581  36.132 239 3.350 12114 54.388
15 -1.608  9.582  36.417 240 3.415 12119 54.509
16 -1.562  9.589 = 36.497 241 3.439 12136 54.650
17 -1.526 = 9.652 = 36.763 242 3577 12146  54.852
18 -1.489  9.655  36.819 243 3598 12171 55.028
19 -1.376 = 9.677  36.843 244 3.890  12.202 55.142
20 -1.338 9715  36.857 245 3.909 12209 55.163
21 -1.334 9728  37.228 246 4006  12.238  56.649
22 -1.330 9731  37.388 247 4161  12.270  56.747
23 -1.293 9750  37.731 248 4173  12.305 56.915
24 -1.281 9762  37.754 249 4174  12.336  57.034
) 25 -1.272 | 9.780 | 37.848 250 4274 12480 57.600
26 -1.235 | 9.787 | 38.052 251 4.461 12534 57.894
27 -1.206  9.796 = 38.122 252 4520 12539 58.082
28 1192 9.813  38.444 253 4556 = 12.613  58.398
29 -1.144  9.822  38.449 254 4620  12.659 58.901
30 -1.101  9.851  38.471 255 4896  13.155  59.453
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. Interpolate, if Necessary, to Find

10t and 90" Percentile Estimates

Estimate Ranks x =5 x =15 x =50
Rank 25 -1.272 9.780 37.848
Lower 80% Bound -1.253 9.783 37.950
Rank 26 -1.235 9.7T87 38.052
Rank 229 2.989 11.977 53.272
Upper 80% Bound| 2.989 11.993 53.279
Rank 230 2.989 12.009 53.285

Note: The 10t percentile of the estimates at any value of x serves
as the lower 80% bootstrap bound, and the 90t percentile serves
as the upper 80% bootstrap bound. 80% of the bootstrap estimates
lie between those two numbers.
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Can We Derive Prediction Bounds

from Bootstrap Bounds?

It Turns Out that the “Bootstrap Bounds,” namely
the 10t and 90" Percentile Bootstrap Estimates,

for any Given x Value are Closer Together than

the Known 80% Lower and Upper OLS Prediction
Bounds

o After some Theoretical Investigations and
Numerical Experimentation, We Found that
Adjusting the OLS Bootstrap Bounds Outward by
an Additive Amount Equal to the SEE of the
“Real” CER Brought the so-called “Bootstrap-
Based” Bounds Closer to the OLS Prediction
Bounds

© MCR, LLC 21



-_ Lower 80% Bootstrap-Based Bounds
* vs. OLS Prediction Bounds
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Cost Driver | Bootstrap 80% | Bootstrap-Based OLS Prediction Differences: B-BB vs. OLS
(x) Values | Lower Bounds | 80°% Lower Bounds | 80% Lower Bounds Absolute Percentage
5 -1.253 -4.003 -4.214 0.2105 4.9958%
7.9 2176 0.574 0.931 0.3572 38.3653%
8.2 2.546 0.204 0.598 0.3938 65.8887%
9.8 4.358 1.608 1.158 0.4501 38.8756%
10 4.569 1.819 1.375 0.4443 32.3172%
11.5 6.222 3.472 2.980 0.4922 16.5158%
15 9.783 7.033 6.582 0.4513 6.8568%
16.4 11.110 8.360 7.965 0.3946 4.9537%
19.7 13.795 11.045 11.103 0.0576 0.5188%
20 14.037 11.287 11.380 0.0932 0.8189%
23.6 17.052 14.302 14.617 0.3158 2.1603%
25 18.238 15.488 15.837 0.3489 2.2030%
30 22.188 19.438 20.058 0.6196 3.0891%
35 26.097 23.347 24.128 0.7810 3.2368%
40 30.03%9 27.289 28.104 0.8142 2.8973%
45 33.945 31.195 32.018 0.8223 2.5683%
50 37.950 35.200 35.890 0.6905 1.9239%
Mean(x) = 13.871
StdDev(x) = 5.670 Note: “B-BB” = Bootstrap-Based Bounds”

Std Error = 2.750

© MCR, LLC 22



7-.' Upper 80% Bootstrap-Based Bounds
vs. OLS Prediction Bounds
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Cost Driver | Bootstrap 80%| Bootstrap-Based OLS Prediction Differences: B-BB vs. OLS
{x) Values | Upper Bounds | 80% Upper Bounds® | 80% Upper Bounds Absolute Percentage
5 2.989 5.739 5.704 0.0349 0.6121%
7.9 5.382 8.132 8.330 0.1978 2.3749%
8.2 5.658 8.408 8.608 0.2000 2.3235%
9.8 7.072 9.823 10.112 0.2894 2.8621%
10 7.223 9.973 10.303 0.3296 3.1995%
11.5 8.586 11.336 11.753 0.4175 3.5525%
15 11.993 14.743 15.282 0.5392 3.5282%
16.4 13.516 16.267 16.751 0.4847 2.8933%
19.7 17.358 20.108 20.337 0.2294 1.1278%
20 17.696 20.446 20.671 0.2249 1.0878%
23.6 21.758 24.508 24.768 0.2600 1.0496%
25 23.268 26.018 26.401 0.3828 1.4499%
30 29.247 31.997 32.367 0.3694 1.1412%
35 35.148 37.898 38.483 0.5851 1.5204%
40 41.147 43.897 44.695 0.7978 1.7849%
45 47.148 49.898 50.968 1.0698 2.0989%
50 53.279 56.029 57.282 1.2529 2.1873%

Mean(x) = 13.871
StdDev{x) = 5.670
Std Error =|2.750
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Bootstrap-Based Bounds as
- Ersatz Prediction Bounds

Bootstrap-Based vs. OLS Prediction Bounds

® Actual Data Points
——Upper 80% OLS Prediction Bounds
——Upper 80% Bootstrap-Based Bounds
——CER-Based Cost Estimates
Lower 80% Bootstrap-Based Bounds
Lower 80% OLS Prediction Bounds

(O8]
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Cost Estimates (y)
N
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15 20 25 30 35 40 45 50 55
Cost-Driver Values (x)
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= Apply Analogous Adjustment

In Other Contexts

 Prediction-Bound Formulas Do Not Exist in
Any Other Cost-Modeling Context

 The “B-BB = BSB*+StdError” Adjustment
Seems Pretty Good in the OLS Case

e« SO Let’'s Agree to Use that Adjustment for
All Additive-Error-CER Scenarios

— It Won't Yield “Exact” Prediction Bounds (we don’t know

what those are yet!) y
— But It’ll Have to Do Until the Real Thing Comes Along
 Then Extend the Analogy to Multiplicative-

Error CERS, I.e.,

— First Apply Percentage Adjustment to Each Estimate

— Then B-BB(y) = BSB(y) + (%StdError) xESTy

— This Makes Sense, because the Term “Percentage
Standard Error” Refers to a Percentage of the Estimate

*“BSB” =*“Bootstrap Bounds”

© MCR, LLC 25



Common CER Forms

e y=Cost
x = Technical Parameter (Cost Driver)
» Factor CER: y =ax
Linear CER: y=a+bx
“Nonlinear” CERSs: y = axb
y = ab*®
y =a + bx*

* a, b, c are Constant Coefficients Derived from
Historical Data

« Although We Will Discuss the Case of Only One
Cost Driver per CER, the Concepts are the Same
for Multiple Cost Drivers, but the Mathematics is
More Complicated

© MCR, LLC 26



(I it . = General-Error Regression

e OLS Offers the Opportunity to Derive Only Two
Kinds of CERs

— Linear (and Other Polynomial) Additive-Error CERSs
— Log-Linear Multiplicative-Error CERs

* In 1974, R.W.M. Wedderburn Established “Iteratively
Reweighted Least Squares” (IRLS) as a Technique
for Deriving ...

— Unbiased CERs

— Multiplicative-Error CERs
— CERs Having Arbitrary Functional Form y = f(a,b,c)

e In 1998, the “Minimum Percentage Error - Zero
Percentage Bias” (MPE-ZPB) Technique was
Introduced to Yield CERs that also Had Minimum
Possible Percentage Error among all Unbiased
CERs of the Functional Form being Considered

© MCR, LLC 27



Minimum-Percentage-Error,

Zero-Percentage-Bias CERs

e Experience and Theory Indicates that IRLS CERs
Do Not Necessarily Have Minimum Possible
Standard Error among all Zero-Bias CERs

 IRLS CERs Maximize “Quasi-Likelihood” — They
do not Minimize Percentage Error

« MPE-ZPB Technique Pursues the Minimum-

Percentage-Error Goal Directly
— Computes Minimum-Percentage-Error CER, Subject to
Constraint that Percentage Bias be Exactly Zero

— CERs Derived Using “Constrained Optimization” — Another
Capability of Excel Solver

2
L C —a—bx;, .
* Minimize F(a,b,c)=2(y" = cx"},SubJectto
i\ a+bx,

the Constraint % Bias(a,b,c) = Z(‘H—bx" _cy"j =0
= a+ bx,
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CER Example: Antenna Cost vs.

Reflector Diameter

Dollars-per-Diameter-Foot Relationship for Ground Antennas

20

18

16 -

14

12

10

Antenna Cost (FY99K$)

] 5 1II] 1.5 2II] 23
Reflector Diameter (Feet)
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: Case 1. Multiplicative-Error Factor

- CER y = axxg Using MPE-ZPB

« Minimum-Percentage Error CERs, Subject to the
Constraint that Percentage Bias be Zero

« Minimize the Sum of Percentage Squared Errors

F(a)=§")(yk'“xk] ,

ax,

Subject to the Constraint that the Percentage Bias

B(a)=zn:(axk _ykj=0

ax,

© MCR, LLC 30



 We First Rearrange the Equation B(a) = 0.

D

N I
= k=1 AX} ai;—; X,

e It then Follows that

Z)’k_na

k=1 X
e This is the Mathematical Form of the MPE-ZPB
Factor CER’s Constraint
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“. Deriving the “Factor” a in the

- CER y=axx¢

 The Constraint that Percentage Bias be
Zero Is Expressed Mathematically as

n

 This Expression Leads Uniquely to the
MPE-ZPB Numerical Value of the
Coefficient a, which is

a=13 %

ni_7 X,

 No Optimization Using Excel Solver is
Needed in this Simple Case
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ff-.' Dollars-per-Foot Data Base for

MPE-ZPB Factor CER

Number of | Diameter | Costy
Data Points | x (feet) |(FY99$K)

7 1.9 3.595 | 0455|0637 | 5.034 |28.5826% | 8.1696%
8.2 1.900 | 0.232 | 0.637 | 5.225 | 63.6360% | 40.4954%
9.8 3.300 | 0337|0637 | 6.244 |47.1530% | 22.2341%
11.5 10.900 | 0.948 | 0.637 | 7.328 |-48.7514% | 23.7670%
16.4 15.434 | 0.941 | 0.637 | 10.450 |-47.6954% | 22.7485%
19.7 16.074 | 0.816 | 0.637 | 12553 |-28.0531%| 7.8698%
23.6 17.274 | 0,732 | 0.637 | 15.038 |-14.8717% | 2.2117%
Sums 97.1 68.477 | 4.460 61.871 | 0.0000% | 127.4960%

EST = Estimated %Bias= 0.0000%
FY = Fiscal Year %Std Error=  46.0970%

R = 86.0636%

yiX a |ESTy=ax| %Bias |%Std Error
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MPE ZPB Factor CER and its Quality
" Metrics Superimposed on Data Base

18

14
12 //
»
10
. . %SEE = 46.1%
631 %BIAS = 0.0%
° ﬁ RZ = 86.1%

0 5 10 15 20 25
Reflector Diameter {Feet)

Antenna Cost {FY99K$)

© MCR, LLC 34



' MPE-ZPB Factor CER Percentage

Residuals (= Actual+=Estimate)

X Actual Estimated Residuals =
Values | y Values | y Values |ActuallEstimated
7.9 3.595 5.034 0.714
8.2 1.900 5.225 0,364
0.8 3.300 6.244 0.528
11.5 10.900 7.328 1.488
16.4 15.434 10.450 1.477
19.7 16.074 12.553 1.281
23.6 17.274 15.038 1.149
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MPE-ZPB Bootstrap Factor CERs

" . Table of Bootstrap y Values, with

x Values Estimated Bootstrap y Value = (Estimated y Value)x(Bootstrap Residual)
(Cost Driver) |y Values 1 2 3 4 5 6
19 5.034 1830 | 5782 | 5782 | 2660 | 6.446 | 1.830
8.2 5.225 2761 | 7772 | 1900 | 6691 | T | 117
9.8 6.244 3300 | 7996 | TAT3 | 4460 | 9.289 | 9.289
11.5 7.328 8417 | 5233 | 9383 | 10.900 | 2.665 | 9.383
16.4 10.450 15.544 | 3800 | T7.463 | 13.381 | 15.434 | 5522
19.7 12,553 14.419 | 8965 | 16.074 | 16.074 | 18.540 | 14.419
236 15.038 22210 | 7.947 | 22369 | 10.739 | 5.468 | 7.947
u (Factor) 0.637 0608 | 0568 | 0676 | 0663 | 0721 | 0.620
% Std Error 46.10% 49.59% | 46.86% | 36.52% | 36.12% | 46.82% | 49.81%
%Bias 0.00% 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
R’ 86.06% 94.92% | 5.18% | 84.04% | 56.53% | 12.61% | 18.29%

© MCR, LLC
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For Each CER, Estimate Cost at Each

of a Range of Cost-Driver Values

Cost Driver Bootstrap Cost Estimates (y Values)
(x Values) #1 #2 #3 #4 # #6
5 3.041 2.839 3.379 3.316 3.607 3.101
7.9 4.805 4.485 5.339 5.239 5.700 4.900
8.2 4.988 4.656 5.541 5.438 5.916 5.086
9.8 5.961 5.564 6.623 6.500 7.071 6.079
10 6.083 5.678 6.758 6.632 7.215 6.203
11.5 6.995 6.529 7.771 7.627 8.297 7.133
15 9.124 8.516 10.137 9.948 10.822 9.304
16.4 9.976 9.311 11.083 10.877 11.833 10173
19.7 11.983 11.185 13.313 13.065 14.213 12.220
20 12.166 11.355 13.515 13.264 14.430 12.406
23.6 14.356 13.399 15.948 15.652 17.027 14.639
25 15.207 14.194 16.894 16.580 18.037 15.507
30 18.249 17.033 20.273 19.896 21.645 18.609
35 21.290 19.871 23.652 23.213 25.2562 21.710
40 24.331 22.710 27.031 26.529 28.860 24.811
45 27.373 25.549 30.410 29.845 32.467 27.913
50 30.414 28.388 33.788 33.161 36.075 31.014
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Rank All 255 Estimates Associated

with a Cost-Driver Value of x

Estimate Ranks x=5 x =15 x =50 Estimate Ranks| x =5 x =15 x =50
1 2.045 6.135 20.451 226 3.782 11.346 37.820
2 2.120 6.360 21.200 227 3.786 11.358 37.860
3 2.153 6.458 21.527 228 3.787 11.361 37.869
4 2.195 6.585 21.950 229 3.792 11.375 37.917
5 2.205 6.614 22.045 230 3.796 11.388 37.961
6 2.209 6.628 22.094 231 3.801 11.403 38.010
7 2.229 6.687 22.290 232 3.842 11.526 38.420
8 2.280 6.839 22.795 233 3.875 11.626 38.754
9 2.289 6.867 22.890 234 3.880 11.641 38.802
10 2.308 6.923 23.076 235 3.881 11.642 38.807
11 2.317 6.951 23.171 236 3.890 11.671 38.904
12 2.322 6.966 23.219 237 3.900 11.700 39.000
13 2.331 6.994 23.315 238 3.910 11.729 39.096
14 2.337 7.011 23.369 239 3.914 11.743 39.144
15 2.337 7.011 23.369 240 3.941 11.822 39.407
16 2.341 7.023 23.411 241 3.946 11.837 39.455
17 2.402 7.207 24.023 242 3.980 11.939 39.798
18 2.407 7.221 24.072 243 4.030 12.090 40.301
19 2.412 7.236 24.120 244 4.045 12.134 40.446
20 2.453 7.358 24.528 245 4.105 12.314 41.046
21 2.460 7.379 24.597 246 4.124 12.371 41.238
22 2.477 7.430 24.767 247 4.134 12.402 41.339
23 2.482 7.447 24.822 248 4.267 12.801 42.669
24 2.486 7.459 24.863 249 4.283 12.850 42.833
25 2.491 7.473 24.911 250 4.283 12.850 42.833
26 2.491 7.473 24.911 251 4.288 12.864 42.879
27 2.496 7.489 24.965 252 4.288 12.864 42.881
28 2.520 7.559 25.197 253 4.293 12.878 42.927
29 2.520 7.559 25.197 254 4.378 13.133 43.775
30 2.535 7.604 25.347 255 4.472 13.415 44.715
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7-_' Bootstrap-Based Prediction-Interval

*  80% Bounds for Factor CER

Cost Driver | Lower 80% Lower - MPE-ZFB Upper + Upper 80%
X Values BS Bounds | %SEE"ESTY | Factor Estimate | % SEE'ESTy | BS Bounds
5 2.491 1.023 3.186 5.263 3.794
7.9 3.936 1.616 5.034 8.315 5.994
8.2 4.085 1.677 5.225 8.631 6.222
9.8 4.883 2.004 6.244 10.315 7.436
10 4.982 2.045 6.372 10.525 7.588
11.5 5.730 2.352 7.328 12.104 8.726
15 7.473 3.068 9.558 15.788 11.382
16.4 8.171 3.354 10.450 17.261 12.444
19.7 9.815 4.029 12.553 20.734 14.948
20 9.965 4.090 12.744 21.050 15.176
23.6 11.758 4.826 15.038 24.839 17.907
25 12.456 5113 15.930 26.313 18.970
30 14.947 6.135 19.116 31.575 22.763
35 17.438 7.158 22.302 36.838 26.557
40 19.929 8.180 25.488 42.100 30.351
45 22.420 9.203 28.673 47.363 34.145
50 24.911 10.225 31.859 52.625 37.939

© MCR, LLC 40



¥ '-.: °. Precision of Estimate Over Range
¢ i " of Possible Cost-Driver Values

80% Bootstrap-Based Prediction Bounds
(MPE-ZPB Factor CER y = 0.637x)
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Case 2: Multiplicative-Error Linear

" CER y = (a+bx) xe Using MPE-ZPB

Actual Estimated | Percentage Percentage Actual |Estimated| Actualy
X Values v Values | vy Values Bias Squared Error Y Y *Estimated vy
7.9 3.595 2.852 -26.0399% 6.7808% 12.924 8.135 10.254
8.2 1.9 3.206 40.7414% 16.5986% 3.610 10.280 6.092
9.8 3.3 5.094 35.2226% 12.4063% 10.890 25.953 16.811
11.5 10.9 7.100 53.5112% 28.6345% 118.810 50.417 77.395
16.4 15.434 12.883 -19.8040% 3.9220% 238.208 | 165.964 198.832
19.7 16.074 16.777 4.1896% 0.1755% 258.373 | 281.464 269.672
23.6 17.274 21.379 19.2014% 3.6869% 298.391 | 457.065 369.302
97.1 68.477 69.292 0.0000% 72.2047% 941.207 | 999.278 948.358
a = -6.470138 7= 7 —
_ 2 2 _ Solver, Parameters ‘X‘
b = 1.180052 nEX-(Ex)" = 1899.3490 : —
%Std Error = 38.0012% nIy’-(Ty?= 21935568 | ETamtcel e [ =
%Bias = 0.0000% NExy{(ExP(Eyf =  1seasest |, e Owe Owest o
R* = 86.0636% ~R= 0.927705 ($BRE17,5BES1S
Subject to the Constraints:
tRDE1S =0 Add
42
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MPE-ZPB Linear CER Detalls

for Diameter-vs.-Cost

« Based on Computations on the Historical Data ...
a=-6.4701; b=1.1801

e Linear Multiplicative-Error CER
y=-6.4701+1.1801x

 Percentage Standard Error of the Estimate

2
1 &|yi—a—-bx,| | 1 _
Z( ) _\/—7_2(0.7220) 0.3800

n—-2=\ a+bx

Standard Error = \/

(Average 38.00% Across the Data Range)
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MPE-ZPB Linear CER and Its Quality

Metrics Superimposed on Data Base

Diameter vs. Cost MPE-ZPB Linear Relationship
(y = -6.4701+1.1801x)
60
50 %SEE = 38.00%
§ %BIAS = 0.00%
E 40 R2 = 86.06%
2 30
@)
e
§ 20
* 10
O :
0 5 10 15 20 25 30 35 40 45 50 55
Reflector Diameter (feet)

© MCR, LLC

44



- " Linear CER Percentage Residuals

" (= Actual+Estimate)

X Values y Values Estimated y Values Residuals =
(Cost Drivers) |(Actual Costs)| (Estimated Costs) | Actual/Estimated
7.9 3.595 2.852 1.260
8.2 1.900 3.206 0.593
9.8 3.300 5.094 0.648
11.5 10.900 7.100 1.535
16.4 15.434 12.883 1.198
19.7 16.074 16.777 0.958
23.6 17.274 21.379 0.808
a = 6.4701 b = 1.1801

% SEE = 38.0012% Y%Bias = 0.0000%

Note: Estimated y Values are Calculated Using the MPE-ZPB
Linear Regression Equation y =-6.4701+1.1801x.
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Bootstrap-Derived Prediction-Interval

80% Bounds for MPE-ZPB Linear CER

Cost Driver| Lower80% |Lower 80% Bound| MPE-ZPB Upper 80% Bound| Upper 80%
(x Value) [Bootstrap Bound| - %SEE'ESTy |Linear Estimate| +%SEE*ESTy |Bootstrap Bound
5 -2.222 -2.439 0.570 1.215 0.998
7.9 1.934 0.850 2.852 4.797 3.713
8.2 2.304 1.086 3.206 5.261 4.042
9.8 4.282 2.346 5.094 7.833 5.897
10 4.469 2.443 5.330 8.188 6.163
11.5 5.935 3.237 7.100 11.008 8.309
15 9.007 4.739 11.231 17.767 13.500
16.4 10.158 5.263 12.883 20.541 15.645
19.7 12.782 6.406 16.777 26.913 20.538
20 13.037 6.527 17.131 27.519 21.009
23.6 16.030 7.905 21.379 34.787 26.663
25 17.181 8.429 23.031 37.602 28.850
30 21.398 10.404 28.931 47.588 36.594
35 25.455 12.219 34.832 57.708 44.471
40 29.556 14.078 40.732 67.734 52.255
45 33.722 16.001 46.632 77.635 59.914
50 37.887 17.925 52.532 87.512 67.549

%SEE = 38.001227%
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80% Prediction Bounds Over Range

of Possible Cost-Driver Values

80% Bootstrap-Based Prediction Bounds
(MPE-ZPB Linear CER y = -6.4701+1.1801x )

—e— Actual Data Points
e 80% Upper Bounds
e CER-Based Estimates
e 80% Lower Bounds

Estimated Costs (y)

0 5 10 15 20 25 30 35 40 45 50 55
Cost-Driver Values (x)
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80% Prediction Bounds for “Small”

Values of the Cost Driver x

80% Bootstrap-Based Prediction Bounds
(MPE-ZPB Linear CER y = -6.4701+1.1801x )

® Actual Data Points
—— Upper 80% Bounds
—— CER-Based Estimates
—Lower 80% Bounds

Estimated Costs (y)

4 6 8 10 12 14 16 18
Cost-Driver Values (x)

© MCR, LLC 49



: Case 3. Multiplicative-Error Power

CER y = ax’xg Using MPE-ZPB

« Based on MPE-ZPB Computations on the Historical
Data Using Excel Solver ...

a=0.1037;, b=1.6934

e Multiplicative-Error CER

y = 0.1037x1.6934
e Standard Error of the Estimate (%SEE)

n

2
Standard Error = | 2:=2=b% | \/L (0.9439) = 0.4345
n—24 a + bx; 7—2

(Average 43.45% Across the Data Range)
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MPE-ZPB Power CER and Its Quality

Metrics Superimposed on Data Base

Antenna Cost (FY99%)

Diameter vs. Cost MPE-ZPB Power Relationship
(y =0.1037x71.6934)
100

%SEE = 43.45%
%BIAS = 0.00%
R? = 80.54%
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. " Power CER Percentage Residuals

(— Actual+Estimate)

x Values y Values  |Estimated y Values| Residuals =
(Cost Drivers) | (Actual Costs) [ (Cost Estimates) | Actual/Estimate
1.9 3.595 3.436 1.046
8.2 1.900 3.659 0.519
9.8 3.300 4.949 0.667
1.5 10.900 6.489 1.680
16.4 15.434 11.835 1.304
19.7 16.074 16.144 0.996
23.6 17.274 21.921 0.788

¢ = 0.103734 b= 1.693439
% SEE= 43.450063% %Bias =  0.000000%

Note: Estimated y Values are Calculated Using the MPE-ZPB
Power Regression Equation y = 0.1037x6%34,
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P
Derive a Power CER Using MPE-ZPG
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X Values Estimated Bootstrap "Actuals” = Estimates x Residuals
(Cost Driver) | vy Values #1 # #3 #4 % #5
7.9 3.436 3.595 3.421 3.595 1.784 5.771 3.595
8.2 3.659 3.643 3.643 1.900 2.440 1.900 3.643
9.8 4.949 5.178 8.313 4.927 6.454 6.454 3.300
11.5 6.489 5113 10.900 3.369 8.461 5113 10.900
16.4 11.835 12.385 | 11.784 7.892 6.145 12.385 | 15.434
19.7 16.144 21.053 | 10765 | 16.894 | 27.121 16.074 | 21.053
23.6 21.921 11382 | 11.382 | 21826 | 11.382 | 11.382 | 11.382
¢ (Constant)| 0.096 1.061 0.067 0.031 0.422 0.095
b (Exponent)] 1.710 0.797 1.788 2.135 1.129 1.756
% Std Error | 28.056% | 35.287% | 32.403% | 54.319% | 38.551% | 40.599%
% Bias 0.000% | 0.000% | 0.000% | 0.000% | 0.000% | 0.000%
R’ 58.393% | 61.167% | 94.945% | 39.494% | 68.860% | 49.636%
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Bootstrap-Derived 80% Prediction

Bounds for MPE-ZPB Power CER

Cost Driver Lower 80% Lower 80% Bootstrap| MPE-ZPB Power | Upper 80% Bootstrap Upper 80%
(x Values) | Bootstrap Bound | Prediction Bound Estimate of y Prediction Bound Bootstrap Bound
5 0.945 0.257 1.583 3.304 2.616
7.9 2.468 0.975 3.436 5.982 4.489
8.2 2.682 1.092 3.659 6.325 4.735
9.8 3.847 1.697 4.949 8.155 6.005
10 4.006 1.781 5.121 8.397 6.172
1.5 5171 2.352 6.489 10.493 7.674
15 7.895 3.473 10.176 16.616 12.194
16.4 8.766 3.624 11.835 19.577 14.435
19.7 10.994 3.980 16.144 27.752 20.737
20 11.161 3.965 16.563 28.579 21.383
23.6 13.338 3.813 21.921 39.809 30.284
25 14.340 3.839 24.168 44.584 34.083
30 17.521 3.221 32.91 64.723 50.423
35 20.865 2.300 42.727 88.358 69.793
40 24.478 1.202 53.569 116.486 93.210
45 28.057 0.357 65.394 148.617 120.203
50 31.700 -2.263 78.167 183.698 149.735

Note: Bootstrap Prediction Bound = Bootstrap Bound £ %SSE*Esty
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77 “<: -.Precision of Estimate Over Range
. ~i " of Possible Cost-Driver Values

80% Bootstrap Prediction Bounds
(MPE-ZPB Power CERy = 0.1037x"1.6934)

—®— Actual Cost Data Points
=—80% Upper Prediction Bounds
— CER-Based Cost Estimates
—80% Lower Prediction Bounds

Estimated Cost (y)
3

Cost-Driver Value (x)
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80% Prediction Bounds for “Small”

Values of the Cost Driver x

Estimated Cost (y)
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80% Bootstrap Prediction Bounds
(MPE-ZPB Power CER y = 0.1037x"1.6934)

e Actual Cost Data Points
80% Upper Prediction Bounds
CER-Based Cost Estimates
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: Case 4. Multiplicative-Error Triad

CER y = (a+bx¢) xe Using MPE-ZPB

« Based on Computations on the Historical Data ...
a=-236.11; b=212.42; c = 0.06

e Multiplicative-Error CER
y=-236.11 + 212.42x"%06

o Standard Error of the Estimate (%SEE)

2
StandardErrorz\/ ! Z(y"_a_bxij :\/i(0.6236):0.3949
n—-347\ a+bx;

(Average 39.49% Across Data Range)
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MPE-ZPB Triad CER, Quality Metrics

Superimposed on Data Base

Diameter vs. Cost

MPE-ZPB Triad Relationship for Ground Antennas
(y =-236.11+212.42x"0.06)

%SEE =39.49%
%BIAS = 0.00%
R2=191.43%

Antenna Cost (FY99%)
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Reflector Diameter (feet)
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*. MPE-ZPB Triad CER Percentage

Residuals (= Actual+Estimate)

« Values Actualy |Estimatedy| Residuals=
Values Values | Actual/Estimated
1.9 3.595 2.786965 | 1.2899336721
8.2 1.900 3.293516 | 0.5768911567
9.8 3.300 5.730955 | 0.5758203023
11.5 10,900 | 7.939498 | 1.3728828226
16.4 15.434 | 12.912169 | 1.1953065162
19.7 16.074 | 15.520302 | 1.0356757065
23.6 17.274 | 18.116607 | 0.9534898236
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'..: -. Bootstrap Sampling of

MPE-ZPB Residuals

Residual Samples

X Values| # ¥ # # #® #
19 | 119 | 1373 | 1.290 | 0953 | 1195 | 0.953
82 | 0577 | 1290 | 1290 | 1290 | 1.0 | 0.576
98 | 1195 | 1373 | 1373 | 0577 | 0953 | 0.576
1.5 [ 0577 | 1036 | 1036 | 0953 | 1373 | 1373
164 | 129 | 1036 | 0953 | 0577 | 1036 | 0953
197 | 1.036 | 0577 | 119 | 119 | 1200 | 0953
236 | 0577 | 1.036 | 0577 | 1290 | 0576 | 0953
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. Use Each Bootstrap Sample to
" Calculate an MPE-ZPB Triad CER

Bootstrap y Values

X Values #1 #2 #3 #4 # #6
7.9 3.331 3.826 3.595 2.657 3.331 2.657

8.2 1.900 4.248 4.248 4.248 3.411 1.896

9.8 6.850 7.868 7.868 3.306 5.464 3.300
11.5 4.580 8.223 8.223 7.570 10.900 | 10.900
16.4 16.656 | 13.373 | 12.312 | 7.449 13.373 | 12.312
19.7 16.074 | 8.954 18.552 | 18.552 | 20.020 | 14.798
23.6 10.451 | 18.763 | 10.451 | 23.369 | 10.432 | 17.274
¢ (Intercept) -234.930 | -233.629 | -234.175 | -235.904 | -236.560 | -236.531
b (Coefficient) 213.612 | 215.212 | 214.377 | 212.627 | 211.969 | 211.998
¢ (Exponent) 0.051 0.048 0.050 0.056 0.059 0.057
% Std Error 43.87% | 23.68% | 26.03% | 38.48% | 30.23% | 35.10%
% Bias 0.0000% | 0.0000% | 0.0000% | 0.0000% | 0.0000% | 0.0000%
R’ 91.45% | 91.46% | 91.45% | 91.43% | 91.42% | 91.42%

Note: Bootstrap y Value = Estimated y Value x Sample Residual
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- For Each CER, Estimate Cost at Each
* of a Range of Cost-Driver Values

(o
s 3
a
.
o
o
e
e
.
©
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Cost Driver Bootstrap Cost Estimates (y Values)
(x Values) 1 2 3 4 5 6
5 -2.884 -1.207 -1.664 -3.302 -3.379 -4.011
7.9 2.640 3.931 3.765 2.710 3.028 2177
8.2 3.096 4.355 4.213 3.207 3.558 2.688
9.8 5.288 6.391 6.367 5.597 6.108 5.149
10 5.538 6.623 6.612 5.869 6.398 5.429
11.5 7.272 8.233 8.316 7.762 8.419 7.379
15 10.605 11.324 11.589 11.400 12.307 11.128
16.4 11.735 12.371 12.698 12.635 13.626 12.400
19.7 14.071 14.537 14.992 15.190 16.360 15.034
20 14.265 14.716 15.182 15.402 16.586 15.252
23.6 16.396 16.689 17.273 17.733 19.081 17.657
25 17.142 17.379 18.005 18.550 19.956 18.499
30 19.516 19.576 20.336 21.151 22.742 21.183
35 21.542 21.449 22.323 23.371 25.122 23.474
40 23.309 23.082 24.057 25.310 27.201 25.474
45 24.878 24.531 25.596 27.032 29.048 27.252
50 26.290 25.835 26.981 28.582 30.712 28.853
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MPE-ZPB Triad CERs
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Rank All 255 Estimates Associlated
with a Cost-Driver Value of x

MFPE-ZPB Estimates 5 15 50 MPE-ZPBE Estimates 5 15 50
1 £1.076 | 6.522 13.361 226 -1.625 13.477 | 35.033
2 -7.833 6.886 13.863 227 -1.603 13.505 | 35.138
3 -7.418 7.289 13.979 228 -1.574 13.511 35.163
4 -7.118 7.924 15.776 229 -1.560 13.590 | 35.227
5 -6.582 8.185 18.484 230 -1.472 13.632 | 35.302
6 -65.464 8.189 18.603 231 -1.423 13.633 | 35.398
I 6£.433 8.308 18.854 232 -1.403 13.700 | 35.641
8 6.229 8.310 18.979 233 -1.262 13.702 | 35.832
=l 6.228 8.506 19.364 234 -1.207 13.704 | 36.019
10 £.151 8.725 19.781 235 -1.192 13.704 | 36.028
11 -5.992 8.804 20.118 236 -1.179 13.769 | 36.038
12 5.942 8.857 20.181 237 -1.167 13.787 | 36.040
13 -5.870 8.930 20.221 238 -1.153 13.838 | 36.099
14 -5.84%9 9.010 20.244 239 -1.029 13.861 36.476
15 5.763 9.103 20.594 240 -1.002 13.880 | 36.597
16 5.649 9.106 21.085 241 0.938 13.889 | 36.611
17 5.635 9.127 21.173 242 0.919 13.046 | 36.882
18 5.624 9.184 21.308 243 0.833 13.960 | 36.925
19 5.618 9.195 21.315 244 0.833 14.039 | 37.133
20 5.597 9.297 21.343 245 0.802 14.069 | 37.534
21 5.538 9.401 21.366 246 0.799 14.088 | 37.778
22 -5.480 9.417 21.837 247 £0.777 14.366 | 38.220
23 -5.328 9.482 22.159 248 -0.608 14.482 | 39.490
24 -5.298 9.482 22.303 249 0.535 14.531 39.708
25 -5.220 9.484 22.376 250 0.443 14.740 | 40.103
26 -5.220 9.523 23.008 251 0.169 14.802 | 40.142
27 -5.209 9.672 23.252 252 0.450 14.839 | 40.805
28 -5.192 9.767 23.288 253 0.595 15.270 | 40.834
29 5.179 9.815 23.538 254 1.446 15.491 43.202
30 -5.119 9.838 23.878 255 1.694 98.704 | 409.270
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: = Bootstrap-Derived Prediction-Interval

_ -: " 80% Bounds for MPE-ZPB Triad CER

Cost Driver | Lower 80% | Lower - |MPE-ZPB Linear| Upper + | Upper 80%
(X Values) BS Bounds SEE% Estimates SEE% BS Bounds
5 -5.220 -6.540 -3.343 -0.196 -1.516
7.9 1.932 0.832 2.787 4.604 3.503
8.2 2.501 1.201 3.294 5.320 4.020
9.8 4.958 2.695 5.731 8.702 6.439
10 5.213 2.841 6.009 9.131 6.759
11.5 6.763 3.628 7.939 12.151 9.016
15 9.504 4.903 11.653 18.212 13.611
16.4 10.628 5.529 12.912 20.245 15.147
19.7 12.586 6.458 15.520 24.538 18.410
20 12.741 6.527 15.737 24.894 18.680
23.6 14.491 7.338 18.117 28.736 21.583
25 15.117 7.635 18.951 30.070 22.587
30 17.115 8.583 21.607 34.353 25.821
35 18.800 9.373 23.875 38.014 28.587
40 20.250 10.041 25.855 41.240 31.031
45 21.536 10.632 27.614 44.143 33.239
50 22.692 11.163 29.198 46.794 35.265
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Precision of Estimate Over Range

of Possible Cost-Driver Values

80% Bootstrap-Based Prediction Bounds
(MPE-ZPB Triad CER y = -236.110+212.422*x"0.057)

® Actual Data Points
——80% Upper Bounds
— MPE-ZPB Triad CER
—80% Lower Bounds

Estimated Costs
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Cost-Driver Values

© MCR, LLC 67



7 80% Prediction Bounds for “Small”

< i " Values of the Cost Driver x

80% Bootstrap-Based Prediction Bounds
(MPE-ZPB Triad CER y = -236.110+212.422x"0.057)

N
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Summary

o Explicit Formulas Exist for Prediction Intervals

Corresponding to OLS-Derived Linear CERs

— These Intervals Can be Reproduced Fairly Well by Adjusting
Bounds Derived by Bootstrap Sampling

— For General-Error CERs, Algebraic Expressions for Prediction
Bounds Do Not Appear to be Available

« Although Theoretical Research in this Direction May
be Worthwhile and May Lead to Future Algebraic
Solutions, There is a Need to Estimate Prediction
Bounds Right Now

 While We Await the “Exact” Solution, the Bootstrap
Sampling Technigue Appears to Offer an Opportunity

to Compute Prediction Bounds for Any Specific CER

— By Analogy with the OLS Adjusted Bootstrap Bounds

— Provides Solution on a “One-Time-Only” Basis for Each CER,
Rather than via an Algebraic Formula of Wide Applicability
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Acronyms

B-BB Bootstrap-Based Bounds

BSB Bootstrap Bounds

CAIG Cost Analysis Improvement Group
CER Cost-Estimating Relationship

EST Estimated

FY Fiscal Year

IC Intelligence Community

IRLS lteratively Reweighted Least Squares
K Thousands (usually of dollars)
MPE-ZPB Minimum Percentage Error — Zero Percentage Bias
NCG NRO Cost Group

NRO National Reconnaissance Office
OLS Ordinary Least Squares

SEE Standard Error of the Estimate
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