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Introduction 

• What is Correlation? Ref. 1 

– A statistical measure of association between two 
variables.  

– It measures how strongly the variables are related, or 
change, with each other. 

• If two variables tend to move up or down together, they 
are said to be positively correlated.  

• If they tend to move in opposite directions, they are 
said to be negatively correlated. 

– The most common statistic for measuring 
association is the Pearson (linear) correlation 
coefficient, ρP. 

– Another is the Spearman (rank) correlation 
coefficient, ρS, which is used in Crystal Ball and 
@Risk 
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Pearson and Spearman 
Correlation 

• Pearson “Product-Moment” 
Correlation 

• Measures Extent of LINEARITY of a 
relationship between two random 
variables 
 
 
 

 
 

ρP = ρPxy, the observed Pearson correlation 
coefficient between two sets of 
variables, x and y 

i = an index variable 
N = the number of variables in either set 
  = the mean of data set x 
  = the mean of data set y 
xi = The ith element of data set x 
yi = The ith element of data set y 

• Spearman Rank Correlation 
• Measures Extent of MONOTONICITY of 

a relationship between two random 
variables 

 
 
 
 
 

 ρS = ρSxy, the observed Spearman correlation 
coefficient between two sets of variables, x 
and y 

i = an index variable 
N = the number of variables in either set 
 = the mean of the ranks of the set of 

variables in set x 
 = the mean of the ranks of the set of 

variables in set y 
Ri = the rank order of variable xi in data set x 
Si = the rank order of variable yi in data set y 
R = the mean of the ranks of the set of 

variables in data set x 
S = the mean of the ranks of the set of 

variables in data set y 
 

  Statistics Theorem:  Spearman Rank Correlation Coefficient Equals Pearson 
(Linear) Correlation Coefficient Calculated Between the Two Sets of Ranks 
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Product Moment (Linear)  vs. 
Rank Correlation 
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ROOT DECAY w/ OUTLIER RANDOM w/ OUTLIER 

More Nonlinear 

Linear Data gives similar ρ and ρs 

Straight line 
Both are the same 

Power (ax^b) 
Both are positive 

“Knee in data” 
Both are positive 

Root 
Both are positive 

One outlier 
shows  

differences 

Random 
With outlier 

shows  
differences 
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The Different Ways to Correlate 
Random Variables 

• Correlation is a statistic – so all correlation is 
statistical 

CORRELATION 
All correlation is statistical 

CAUSAL 
Something causes A and B  

to co vary 

It can be causal 
(a relationship exists) 

PURELY 
STATISTICAL 

No causal relationship exists 

It can be a purely  
statistical artifact 

FUNCTIONAL 
Relationship between  

A and B is modeled  by  
an equation 

We may be able 
to functionally 
describe the  
relationship 

CAUSAL STATISTIC 
Relationship between A and B 
is statistically modeled using  

correlation coefficients 

The equation for the 
relationship may not 
be known or modeled 

with an equation 
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Purely Statistical Correlation 

• How accurate are your cost models? 
• The percentage errors of the Aerospace Small Satellite Cost 

Model (SSCM1998) subsystem CERs have percentage errors 
between 30% and 40% (1σ) 

• When we take the RSS (square root of sum of squares) of the 
model errors, the model reports a 1σ error of about 13%  
 
 

• However, when we plug-in the actual database cost drivers into 
the model, SSCM estimated the database to 24% (That’s how 
accurate the model is) 

• The missing piece is the correlation between the errors, effectively 
10% 
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Functional Correlation 

• Functional correlation exists:  
– Between cost drivers (Power and Weight) 
– Between CERs and their cost drivers (Cost = a*Weightb) 
– Between certain pairs of CER (SEITPM = a*PMPb) 
– Between CERs using the same cost driver 

 
• This happens when: 

– Random variables are transformed (scaled and/or distorted) 
by a function 

 
– Random variables are “reused” 

[Ref.2 - Coleman]  
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Functional Correlation: 
Transformations 

• Y is correlated to X through a function (transformation) 
– X and Y are correlated through the transformation 
– Suppose Y = a+ b*xc:  Y = 1 + 1.5*X2.2 

– And if X varies from 1 to 10, then: 
•  ρxy = 0.964  

 
X Y

1 2.5
2 7.9
3 17.8
5 52.7
7 109.5

10 238.7

ρ(Y1,Y2) 0.964

0.0
50.0

100.0
150.0
200.0
250.0
300.0

0 5 10 15

X

Y
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Functional Correlation: Reusing 
Random Variables 

• Y1 and Y2 are correlated to each other by reusing a 
random variable 
 

• Suppose Y1=a1+b1*xc1 and Y2 = a2+b2*xc2 

– Y1 = 1.0 + 1.5*X2.2 

– Y2 = 0.9 + 20*X0.9 

– And if X Varies from 1 to 10, then: 
–  ρxy = 0.956  

X Y1 Y2
1 2.5 20.9
2 7.9 38.2
3 17.8 54.7
5 52.7 86.0
7 109.5 116.1

10 238.7 159.8

r(Y1,Y2) 0.956

0.0

50.0

100.0

150.0

200.0

0.0 100.0 200.0 300.0

Y1

Y2
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Causal Statistical Correlation 

• Correlation does not imply direct causation 
• Consider this statement based on some statistical data: 

– “Shark attacks are correlated to ice cream sales”. 
 

• This DOES NOT mean that ice cream sales increase 
because of shark attacks (or vice versa). 
 

• More shark attacks happen in warm weather, and more 
ice cream is consumed in warm weather, therefore ice 
cream sales and shark attacks are positively correlated. 
– So as temperatures increase, more people swim in the 

ocean and more people eat ice cream. 
– Something (the temperature) causes A (shark attacks) and 

B (ice cream sales) to co vary, but we do not know the 
exact equation. 

 Correlation tells us the degree to which two variables covary, not why 
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Causal Correlation 

• Causal Statistical correlation is correlation that is causal in 
nature without a functional relationship defined in our 
model 

• What does this mean? 
– We know that two random variables covary, but we have 

not modeled the relationship with an equation 
– We use correlation coefficients to mimic their behavior 

• An example 
– Spacecraft Weights and Powers 

• We know that as we increase the mass of a 
spacecraft component, inertia and weight increase   

• This will drive both structural rigidity requirements 
and attitude control torque requirements 

• Structure and ADACS weight may go up as 
component mass increases 

• We can mimic this behavior by correlating the variance on 
the masses (but it is better to use equations!) 
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Causal Correlation of Weight? 

• Weight (as a cost driver) correlation statistics should not be 
used explicitly to correlate weights as cost drivers in 
probabilistic simulations. 

• They do not tell you how your weights for your spacecraft will 
covary, only how those weights covary in the databases they 
came from. 

• Weight Correlation from USCM 7 and Small Satellite Cost 
Model 
 
 
 
 
 
 
 

• Hu has derived weight correlations for USCM-8 

USCM7 ADCSWT AKMWT COMMWT EPSWT STRCWT THERWT TT_CWT Avg Correl
ADCSWT 1.000 -0.128 0.772 0.869 0.441 0.193 0.447 0.595
AKMWT -0.128 1.000 0.721 -0.011 0.438 0.000 -0.029
COMMWT 0.772 0.721 1.000 0.779 0.672 0.230 0.645
EPSWT 0.869 -0.011 0.779 1.000 0.552 0.374 0.222
STRCWT 0.441 0.438 0.672 0.552 1.000 0.157 0.443
THERWT 0.193 0.000 0.230 0.374 0.157 1.000 -0.119
TT_CWT 0.447 -0.029 0.645 0.222 0.443 -0.119 1.000

SSCM ACSWT PROPWT EPSWT STRWT CDHWT Avg Correl
ACSWT 1.000 0.295 0.469 0.163 0.553 0.670
PROPWT 0.295 1.000 0.461 0.561 0.757

EPSWT 0.469 0.461 1.000 0.828 0.860
STRWT 0.163 0.561 0.828 1.000 0.903

CDHWT 0.553 0.757 0.860 0.903 1.000

…and they 
differ 

between  
models 

Pretty close! 

[Ref. 3- Hu] 
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Finding Causal Statistical 
Correlation 

• What to do: 
– Ask an engineer to determine these functions and 

error correlations using a model of your system 
• What not to do 

– Use Weight and power data from multiple satellites to 
determine these correlations 

– Why?  
• Because data from multiple missions, orbits, 

manufacturers and requirements will give poor, 
misleading results 

 
 

[Ref. 3- Hu] 
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Mix of Correlations 

• Remember there are (at least) the following ways to 
correlate random variables: 
– Purely statistical (through correlation coefficients) 
– Causally: 

• Statistical basis (through correlation coefficients) 
• Functional basis (through equations) 

 
• What if an estimate has all of these? 

– What type is most important? 
– Can you ignore some of them? 

 
• The answer depends on the model… 
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Signal To Noise Ratio (SNR) 

• The transformation function (Y=a+bxc) correlates the 
output (Y) to the input (X) 
– If the (random) noise, ε, added to the transformed 

“signal”, Y,  is small, then Y+ε and X will be strongly 
correlated because ε has such a small contribution to the 
variance of Y+ε 

– If ε is large, the correlation magnitude will decrease 

Random  
Variable(s) 

x 

Transformation 
(y=a+bx^c) 

Transformed  
Random  
Variable 
 + Noise 

+ 

Noise 
(Error) 

ε 
x 

y 

x 

Y+ε 
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Impacts of Functional Correlation with 
Varying SNR 

• We can model the ratio of the variances σ2
Y/σ2

ε as our 
“Signal to Noise Ratio”, SNR, 
– We will see the impacts on contribution to variance of X 

(the system input) and ε (the noise input) 
• In our example, X and ε are identical symmetric 

distributions, so we will model the ratio of Y to ε as the 
SNR (in this case only) 
 
 
 
 
 
 

• This tells us that functional correlation dominates when 
the added noise magnitude is less than the signal’s and 
vice versa. 

Contribution to Variance vs. SNR
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In this example: 
X = Normal Dist, µ=1, σ = 0.3 

Y = 1 + 1* X ^ 2 
E = Normal Dist, µ=k*1, σ = k*0.3 

K = (0.2,0.4,1,2,4,10,20) 
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Interpreting the SNR 
Demonstration 

• The SNR demonstration tells us that functional 
correlation only dominates when its contribution 
overpowers the noise contribution 

• If there is functional correlation and “noise” in a cost 
estimate, we should see which one dominates and why 

• Remember added noise may be the statistical sum of 
all of the non functionally correlated terms in our 
estimate (other errors). 
– If there are a large number of added noise terms, their 

correlation will be an important factor 
– Correlation of the noise will have a big impact if the 

number of terms is large 



 
 

23 

SCEA Training Example 

• The first example can be found in the SCEA 
Training Manual Case Studies Page CE V – 80  

• Hu and Smith have shown this example has: 
– A combination of throughput and factor relationships 
– No risk applied to the factors 
– PMP drives about 70% of the model result, so 70% of the 

risk is modeled with a normal distribution making it 
reasonable that the total cost is likely to be normally 
distributed. 

• We can model this example using an approach similar to 
our SNR example 
 

 

[Ref 4.] 
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Case Study Page CE V – 80 SCEA 
Training Manual 

• A Signal (PMP) to Noise (η) Ratio Problem 

ES Total 

PMP η1 

+ 

Signal Noise 

+ 

SEPM STE DTO IS STR 

Amplified (Signal + Noise) 

MR 

SSA 

SW 
EPP 

OS 

η2 

Added Signals + Noise 

η3 

η4 

η5 

η6 

+ 

+ 

+ 

+ 

+ + 
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SCEA Example in SNR form 

• This example can be rewritten in our SNR form 
 
 
 
 
 
 
 
 
 

• So the Ratio of variances is (SNR) 33.76/ 2.41 = 14.01 
– The signal dominates the noise by a significant degree 

• If we correlate all of the noise terms to ρ = 1, it still 
doesn’t make a difference SNR = 33.76 / 4.69 = 7.2 
– The signal still dominates the noise by a significant degree 

Random  
Variable(s) 

PMP 
 µ=12.5 

 σ=2.569 

Transformation 
Y=0 + 2.2625 * PMP 

 µ =28.28125,  σ=5.81 
 σ2 = 33.76 

Transformed  
PMP 

 + Uncorrelated  
Error Terms 

 µ =40.98,  σ=6.03 
 σ2 = 36.36 

 
 

+ 

Uncorrelated 
Error Terms, ε 

 µ = 12.7 
 σ = 1.55 
 σ2 = 2.41 

PMP 
SEPM 
STE 
DTO 

IS 
STR 

MR 
SSA 
SW 
EPP 
OS 



 
 

26 

But when does it make a 
difference? 

• The sigma of the sum of the error terms in our 
example is sensitive to the number of terms, n 
– Correlation has a greater impacts as n increases 
– In the relationship:  

• The number of covariance terms = n*(n-1) 
• The number of variance terms = n 
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Example: The “Big” WBS 

Suppose a risk analyst diligently applies distributions to 
all costs at the “level of estimating” – this is good. 

• Assume that: 
– There are 300 cost elements (N=300) 
– There are about four cost elements in each subsystem (n=4) 
– There are (N/n = 75 subsystems) 
– Correlation is defined between all elements within a subsystem 

using a grouping technique  
• This means: 

– That                                          
 

– WBS elements are correlated 
– Only about 1% of the cost elements are correlated 
– Risk is very narrow and understated 

• The correlation appears “just-off-the diagonal” of the 
correlation matrix – This is bad. 

[ ] [ ] 010033.0
89700

900
299*300

3*4)4/300(
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“Just-Off-Diagonal” Correlation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Some tools cannot support this function 
• Some nominal statistical correlation does exist  
• Even a few percent makes a big difference with a big WBS 
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1 0.5
1

These Inter-Subsystem  
WBS Elements are  
Effectively Uncorrelated 

These  
Intra-Subsystem  
WBS Elements are  
Correlated 



 
 

29 

When Functional Correlation 
Dominates 

• Functional correlation could be the dominant type 
of correlation affecting the total cost variance if: 
– There are few WBS elements (less than about 30) 

• Allow the central limit theorem to dominate 
– The cost estimates of WBS elements are related to 

each other (applying a factor) 
• Functional relationships 

– The cost estimates are driven by few random 
variables that are “reused” directly or indirectly 
throughout the estimate 

• Lots of reuse 
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When Purely Statistical 
Correlation Dominates 

• Purely Statistical Correlation will be the dominant 
source of correlation if these conditions are met: 
– There are many WBS elements (more than 30) 
– The WBS elements are grouped in parent WBS 

elements that are not causally related 
– The cost estimates for WBS elements are driven by 

several different random variables that are not related 
by functions in the model 

– There is little variance on the cost drivers 
– The cost estimating relationships are independent of 

each other (i.e. they are not functionally correlated) 
and little causal relationship is known between the 
variables 
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Find the Missing Causal 
Correlation 

• Correlation starts when we develop CERs 
– Find independent variables that are correlated with cost 
– Here is an example using fictitious antenna data: 

 

-
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15,000.00

20,000.00

25,000.00

0 5 10 15 20 25

AD, m

C
os

t, 
05

$K

-

5,000.00

10,000.00

15,000.00
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HIGHLY CORRELATED 
ρ = 0.9843 

ALSO HIGHLY CORRELATED 
ρ = 0.9195 

LOOSELY CORRELATED 
ρ = 0.2032 

Program
Antenna 
Diameter, m

Frequency, 
GHz

Slew Rate, 
deg/sec Cost BY05$K

1 3 2 0 45.40              
2 3 2 1.05 83.72              
3 5 2 0 78.56              
4 15 22 0 11,882.00       
5 20 22 1 15,656.33       
6 4 10 0 1,243.68         
7 3 12 0.95 2,087.28         
8 5 10 0.5 2,436.85         

Correl with Cost 0.9843 0.9195 0.2032 1.0000
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Regression Analysis 

• Pick antenna diameter (AD) and frequency (Freq) as cost 
drivers for a regression of the form Y = a*x1^b*x2^c 

• The regression results from a zero percent bias, minimum 
percentage error are 
– Y = 11.239 * AD ^ 0.3931 * Freq ^ 1.935 
– Bias = 0% 
– % Std Error = 22.8% 

Actula vs. Est Cost BY05$K

0

5000

10000

15000

20000

- 5,000.00 10,000.00 15,000.00 20,000.00

Actual Cost

Es
t C

os
t

We showed that cost was  
correlated to two variables: 

Antenna Diameter , m 
Frequency, GHz 
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Program
Antenna 
Diameter, m

Frequency, 
GHz

Slew Rate, 
deg/sec Cost BY05$K Est

(Act-Est) 
/Est

1 3 2 0 45.40              66.17         (0.31)       
2 3 2 1.05 83.72              66.17         0.27        
3 5 2 0 78.56              80.89         (0.03)       
4 15 22 0 11,882.00       12,884.91  (0.08)       
5 20 22 1 15,656.33       14,427.77  0.09        
6 4 10 0 1,243.68         1,667.15    (0.25)       
7 3 12 0.95 2,087.28         2,118.54    (0.01)       
8 5 10 0.5 2,436.85         1,820.01    0.34        

Correl with Cost 0.9843 0.9195 0.2032 1.0000 % Bias 0.0000
Correlation with %Error 0.0847 0.0512 0.6565 0.0924 %SE 0.227617

But, We Left Something Out 

• All our independent variables are (pretty much) uncorrelated 
with the percentage error (as they should be) 
– We didn’t include the slew rate in the regression 
– Remember it was loosely correlated with cost, ρ = 0.2032 

 
 
 
 
 
 
 
 

• But it has a correlation with the percentage error of cost,                  
ρ = 0.6565, which can be used to drive your risk model! 

Hidden correlations exist 
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• Why is correlation used? 
– To quantify the effects of statistical dependence when performing 

algebra on random variables. 
– It has a large impact on the statistical properties of the results, 

particularly when many random variables are involved. 
 

• Example: Dice Roll. 
– What happens when we roll 2 dice and add their result? 
– Assume 3 cases: 

• Case 1: Uncorrelated.  Outcome of 1 die is independent from 
the other. 

• Case 2:  Negatively correlated.  Outcome of 1 die relate to the 
outcome of the other.  If one die is a “6”, the other must be “1”. 

• Case 3:  Positively correlated.  Outcome of 1 die is same as the 
other. 

Effects of Correlation 
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Example: Dice Roll 

• Roll of the die gives an equal chance of getting an 
outcome (1,2,3,4,5 or 6) 
– Equal, discrete  probability 
– Uniform discrete distribution of probabilities 
– Variance, σ2 = 3.5 

 
 
 
 
 
 
 

• What happens when we sum 2 correlated dice? 
 

Roll of a Die 

0 
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Probability of x, P(x) = 1/6 
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Example: Dice Roll 

Sum of Dice: Uncorrelated 
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Sum of Dice: Correlation =+1 
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Sum of Dice: Correlation =-1 
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Case 1: ρ = 0 

Case 2: ρ = -1 

Case 2: ρ = +1 

Triangular, discrete shape 
Moderate variance, σ2=6 

Mean = 7 

P(7) = 1 
P(<>7)=0 

No variance, σ2=0 
Mean = 7 

Uniform, discrete shape 
P(each even)=1/6, P(odd) =0 

Wide variance, σ2=14 
Mean = 7 

2   +   1   = 3 

5   +   2   = 7 

2   +   2   = 4 
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Dice Roll Results* 

• What happens when we increase correlation from –1 to +1: 
 
 
 
 

• Mean stays the same 
• Variance increases with increasing correlation 
• Kurtosis (measure of peakedness of the distribution) goes down 

with increasing correlation 
• What we learned about the effects of correlation on sums of dice: 

– It affects the variance and shape 
– It doesn’t affect the mean 
 ρ= 0 changes shape to a discrete triangular distribution 
 ρ=-1 changes shape and removes all variance 
 ρ=+1 preserves shape, adds the most variance, and is the same as multiplying by 2 

 

*Theoretical, of course 

Correlation Mean Variance Kurtosis (Est)
-1 7 0 +Inf.
0 7 6 2.36

+1 7 14 1.73
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What We Learned From Dice Roll 

• The sum of dice example used a discretely 
distributed random variable, but the same rules 
apply for continuously distributed random 
variables. 
– Uniform, Triangular, Normal, Lognormal, Weibull, 

Gamma, etc. 
 

• You should care because correlation can be a huge 
contributor to the amount of risk in probabilistic 
cost estimates 
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Cost-element Probability  
Distributions 

Best Estimate 

Low Risk 

High Risk 

Low Cost, High Risk vs.  

High Cost, Low Risk 

Best Estimate 

Narrow Symmetric 
distribution: equal  

Probability of actual 
cost higher or lower 
than best estimate 

Wide, Right Skewed 
distribution 
Lower point 

estimate, but high 
probability of actual 

cost greater than 
point estimate 

These curves 
tell two very 

different stories 

Would you believe 
both could come 

from the same 
estimate? 

Well, they do. 

mode =  
mean 

mean 

mode 
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Two Distributions 

• Remember these two curves? 
• They were formed from the same estimate, but the 

skewed distribution includes correlation and the 
other assumes no correlation 
– Means are the same 
– Variance and skewness are different 

 

Low Cost, High Risk vs.  

High Cost, Low Risk 

correlated 
uncorrelated 
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•Introduction 

•The Different Types of Correlation 

•Different Ways to Correlate Random 
Variables 

•Impact of Correlation on Risk Analysis 

•Modeling Correlation 

•Deriving Correlation Coefficients 

•Summary 
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Representing Correlation Matrices 

• Single value shorthand: 
 
– This means all of the off diagonal terms are the same 

value 
• Correlation Matrix 

– Contains all inter element correlations 
• The Rules: 

– Always positive definite 
– Diagonal terms always 1.0 
– Off diagonal terms are correlation values 
– Columns and rows are transposed,  ρj,k = ρk,j 

 
• Now for some practical examples 

1
1

1
1

1
ρ 

ρ = ρ 
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Spacecraft Bus: USCM7 
Correlation Coefficients 

• Correlation coefficients for USCM7 Weight based, Mean 
Unbiased Percentage Error (MUPE) CERs  
– Average correlation coefficient = 0.160 

ADCSNR

AG
ENR

CO
M

M
NR

EPSNR

IATNR

PRO
G

NR

STRCNR

THERNR

TT CNR

ADCST1

AKM
T1

CO
M

M
T1

EPST1

IATT1

LO
O

ST1

PRO
G

T1

STRCT1

THERT1

TT CT1

ADCSNR 1.000 -0.067 -0.096 -0.035 0.035 0.012 0.413 0.605 0.121 -0.095 0.983 -0.122 0.099 0.564 0.139 0.089 -0.047 -0.057 0.092
AGENR 1.000 -0.028 0.525 -0.079 0.127 0.091 -0.230 -0.125 0.416 0.001 0.085 -0.043 -0.163 -0.189 0.033 0.146 0.151 0.232
COMMNR 1.000 0.888 0.884 0.966 0.762 0.281 0.850 -0.166 0.305 -0.176 0.157 0.368 0.884 -0.158 0.109 0.037 -0.004
EPSNR 1.000 0.265 0.604 0.409 0.003 0.337 0.237 0.011 -0.275 0.076 0.342 0.021 -0.049 0.465 0.123 0.035
IATNR 1.000 0.721 0.615 0.331 0.747 -0.037 0.391 -0.133 -0.028 0.501 0.265 -0.145 0.113 -0.014 -0.189
PROGNR 1.000 0.697 0.222 0.868 -0.065 0.145 -0.191 -0.044 0.444 0.329 -0.191 -0.000 -0.125 0.019
STRCNR 1.000 0.837 0.761 -0.001 0.117 -0.214 -0.113 0.418 0.173 -0.018 0.220 -0.103 0.069
THERNR 1.000 0.077 -0.200 0.662 -0.171 -0.053 0.514 0.102 -0.010 -0.063 -0.165 0.092
TT CNR 1.000 -0.149 0.475 -0.118 -0.071 0.519 0.294 -0.178 -0.111 -0.095 0.022
ADCST1 1.000 -0.100 0.614 0.421 -0.262 -0.354 0.543 0.676 -0.029 0.655
AKMT1 1.000 -0.006 0.292 0.855 0.286 0.176 -0.003 -0.027 0.052
COMMT1 1.000 0.266 -0.454 -0.088 0.777 0.729 0.126 0.391
EPST1 1.000 -0.150 -0.145 0.381 0.388 -0.007 0.520
IATT1 1.000 0.448 -0.144 -0.224 -0.014 -0.320
LOOST1 1.000 -0.336 -0.097 -0.074 -0.169
PROGT1 1.000 0.421 -0.039 0.481
STRCT1 1.000 -0.175 0.285
THERT1 1.000 -0.140
TT CT1 1.000

These correlation coefficients should not be used 
for all spacecraft cost models 
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How to Use Correlation Matrices 

• Typically, we wouldn’t want to define all of the 
correlation coefficients for a big WBS (>10 elements) 
 

• We can break it up into parts, get the statistics and 
then sum at higher levels 
– Reduces the size of correlation matrices 
– Provides Risk Breakout by WBS Summary Level 

 
• Lets use an example of a “Big” WBS with 40 elements 
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40 Element WBS 

• 40 Individual WBS Elements and the correlation matrix 
SEITPM

Systems Engineering
Integration & Test
Program Management
Configuration Management
Data

Space
Space Vehicle SEITPM
Space Vehicle

Spacecarft Bus
Bus Systems Engineering
Bus I&T
Bus PM
Bus Data
Structures & Mechanisms
Thermal Control
Attitude Determination & Control
TTC / C&DH
Propulsion
Elecrical Power
LOOS
AGE

Payload
PL SEITPM
Optical Telescope
Panchomatic Sensor
Multispectral Sensor
Spectrometer
Magnetometer
Gravitometer
UV Sensor

Ground
Ground SEITPM
Ground Terminal
Mission Planning
Satellite OPS / Control
Data Archive and Dissemination

Launch
Launch Vehicle
Launch Systems Integration
Launch Vehicle Integration
On-Orbit Checkout
Launch Vehicle SE

Operations
SEITPM
Maintenance
Mission Planning
Mission Ops
Data Archive and Dissemination

1 0.2 0.4 0.3 0.3 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0 0.2 0.3 0.1 0 0.2 0.4 0.5 0.5 0.1 0.1 0.4 0.4 0.1 0.1 0.4 0.2 0 0.1 0.3 0.2 0.3 0.3 0.4 0.3 0.2
1 0.1 0.2 0.3 0 0.2 0.4 0.2 0.4 0.3 0.3 0.2 0.5 0.1 0.1 0.1 0.3 0.5 0.3 0 0.4 0.1 0.1 0.4 0.1 0.1 0.5 0 0.3 0.1 0.1 0.4 0.2 0.5 0.2 0.5 0

1 0.3 0.5 0.3 0.3 0.2 0.1 0.4 0.3 0.2 0.5 0 0.1 0.5 0.4 0.4 0.4 0.4 0.5 0.3 0.4 0.5 0.2 0 0 0.4 0.1 0.3 0.5 0.3 0 0.1 0.2 0.4 0.5 0.4
1 0.5 0.1 0.3 0.5 0.2 0.1 0.1 0.3 0.1 0.2 0.5 0.3 0.5 0.3 0.3 0.3 0.2 0.5 0.3 0.1 0.4 0.3 0.1 0.5 0.4 0.4 0.5 0.4 0.4 0.4 0.2 0.4 0.5 0.2

1 0.2 0.4 0.1 0 0.3 0.3 0.4 0 0.2 0.4 0.5 0.3 0.2 0.1 0.2 0.5 0.2 0.4 0.5 0.2 0.2 0.4 0.4 0.4 0.5 0.3 0.4 0.5 0 0.2 0.3 0.3 0.2
1 0.1 0.2 0 0.1 0.2 0.3 0 0.5 0.2 0.1 0.3 0.1 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.4 0.1 0.1 0.2 0.4 0.4 0.2 0 0.5 0.5 0 0.1 0.1

1 0.3 0.2 0.3 0.3 0.1 0.1 0.1 0.4 0 0.1 0.3 0.4 0.2 0.4 0.4 0.2 0.1 0.1 0.3 0 0.4 0.3 0.5 0.1 0.4 0.5 0.5 0.1 0.1 0.2 0.4
1 0.4 0.4 0.2 0.2 0.5 0.5 0 0.4 0 0.2 0.2 0.3 0.1 0.4 0.2 0 0.1 0.4 0.1 0.1 0.1 0 0.1 0.4 0.4 0 0.3 0.5 0 0.3

1 0.1 0 0.1 0 0.2 0.5 0.4 0.3 0.2 0 0.5 0 0.4 0.3 0.5 0.1 0.1 0 0.4 0.2 0.1 0.4 0.2 0.1 0.1 0.1 0.4 0.3 0.1
1 0.4 0 0.2 0.5 0.1 0.3 0.5 0.4 0.3 0.1 0.1 0.5 0.4 0 0.5 0.1 0.5 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.3 0.5 0.1 0.2

1 0.4 0.3 0.3 0.1 0.1 0.1 0.3 0.5 0.3 0.1 0.5 0.1 0.3 0.4 0.2 0.2 0.2 0.5 0.1 0.5 0.2 0.3 0 0.1 0.1 0.2 0.5
1 0.2 0.1 0 0.1 0.3 0 0.3 0.3 0.4 0.2 0.5 0.1 0 0 0.2 0.2 0.1 0.4 0.3 0 0.3 0.2 0.3 0.4 0.3 0.3

1 0.2 0.1 0.1 0.2 0.4 0.5 0.4 0 0.3 0.5 0.2 0.2 0.3 0 0.4 0.1 0.1 0.2 0.1 0.2 0.4 0.3 0.2 0.1 0.1
1 0.2 0.1 0.2 0.3 0.1 0.5 0.2 0.4 0.4 0.5 0.5 0.4 0.4 0.2 0.3 0.2 0.4 0.3 0.1 0 0.1 0.5 0.3 0.3

1 0.2 0.1 0.1 0.2 0.4 0.2 0.2 0.3 0.5 0.4 0.2 0.4 0.4 0 0.3 0.4 0.4 0.2 0.3 0 0.4 0.2 0.3
1 0.3 0.1 0 0 0.2 0.2 0.3 0.4 0 0.1 0.4 0.1 0.3 0.1 0.4 0.1 0.3 0.2 0.2 0.1 0.4 0.1

1 0.3 0.4 0.3 0.4 0.1 0.4 0 0.4 0.1 0.4 0.1 0.4 0.3 0.5 0.2 0.2 0.3 0.4 0.5 0.1 0.4
1 0.3 0.3 0.2 0 0.3 0.5 0.4 0.4 0.4 0.4 0.2 0.4 0.2 0.1 0.3 0.3 0.5 0.4 0.5 0.4

1 0 0.5 0.3 0 0.3 0.3 0.2 0.5 0.4 0.1 0.3 0.4 0.4 0.4 0.5 0 0.2 0.5 0.3
1 0.3 0.1 0.5 0.3 0.1 0.2 0.3 0.1 0.1 0.4 0.4 0.2 0.1 0.1 0.3 0.1 0.2 0.1

1 0.1 0.1 0.1 0.2 0.4 0.3 0.5 0.4 0.1 0 0.5 0.2 0.4 0.1 0.2 0.5 0.3
1 0.3 0.3 0.2 0.5 0.3 0.1 0.4 0.3 0.3 0.2 0.2 0.3 0 0.5 0.3 0.4

1 0.1 0.1 0.5 0.3 0.5 0.4 0.1 0.2 0.3 0.2 0.5 0 0.3 0.1 0.4
1 0.2 0.1 0.4 0.3 0.3 0.3 0.1 0.4 0.2 0.2 0.2 0.2 0.5 0.3

1 0.5 0.5 0.2 0.3 0.1 0.3 0.4 0.3 0.4 0.3 0.3 0.2 0.3
1 0.3 0.2 0.5 0.3 0.5 0.1 0.4 0.3 0.1 0.3 0.1 0.2

1 0.5 0.3 0.1 0.1 0.2 0.1 0.4 0.2 0.2 0.5 0.2
1 0.2 0.4 0.5 0.4 0.1 0 0.5 0.3 0.3 0.1

1 0.1 0.2 0.3 0.1 0 0.4 0.2 0.3 0.5
1 0.5 0.2 0.2 0.3 0.1 0.4 0.4 0.4

1 0.1 0.1 0.3 0.2 0 0 0.4
1 0.2 0.2 0.4 0.2 0.1 0.4

1 0.4 0.1 0.2 0.3 0.2
1 0.4 0.3 0.3 0.1

1 0.1 0 0.2
1 0 0.4

1 0.2
1

Imagine 300 WBS Elements! 
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Big Correlation Matrix Layout 

AA 

BA 

CA 

DA 

EA 

AB 

BB 

CB 

DB 

EB 

AC 

BC 

CC 

DC 

EC 

AD 

BD 

CD 

DD 

ED 

AE 

BE 

CE 

DE 

EE 

A= SETPM  
 (5 elements) 
 
B= Space Segment 
 (20 elements) 
 
C= Ground Segment 
 (5 elements) 
 
D= Launch Segment 
 (5) elements) 
 
E= Operations Segment 
 (5 elements) 

Each Block Represents a group of inter element correlations 
The full matrix requires (40*39)/2=780 different correlations 
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Multilevel Risk 

• Look at the problem one small set of pieces at a 
time 
 
 
 
 
 
 
 

Mean Sigma
SEITPM 11.22 2.70

Systems Engineering 1.2 0.24
Integration & Test 1.8 0.72
Program Management 0.9 0.27
Configuration Management 7.2 2.16
Data 0.12 0.048

SEITPM Mean = Sum(Means) 
SEITPM Sigma =SQRT(MMULT(MMULT(TRANSPOSE(sigma),correl_matrix),sigma)) 

1 0.3 0.3 0.3 0.3
0.3 1 0.3 0.3 0.3
0.3 0.3 1 0.3 0.3
0.3 0.3 0.3 1 0.3
0.3 0.3 0.3 0.3 1

ρSEITPM 
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Space Element Risk 

• In the Space Element, first break-out the Bus calculation 
 
 
 
 
 
 
 

• Space Vehicle SEITPM is one line item,  
 

• Let’s assume we already calculated mean and sigma for 
the Payload, like we did for the Bus 

Mean Sigma
Spacecarft Bus 40 7.48

Bus Systems Engineering 3.2 1.12
Bus I&T 3.3 1.32
Bus PM 1 0.25
Bus Data 0.5 0.2
Structures & Mechanisms 1 0.3
Thermal Control 1 0.3
Attitude Determination & Control 8 2.4
TTC / C&DH 10 3
Propulsion 6 1.8
Elecrical Power 3 0.9
LOOS 2 0.6
AGE 1 0.3

1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.25 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.25 0.25 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.25 0.25 0.25 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25 0.25 1 0.25 0.25 0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25 0.25 0.25 1 0.25 0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25 0.25 0.25 0.25 1 0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1 0.25 0.25 0.25
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1 0.25 0.25
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1 0.25
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1

ρS/C Bus 

Mean Sigma
Payload 83.0 17.74

Mean Sigma
Space Vehicle SEITPM 43.1 19.38
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Space Element Risk 

• Now we roll-up 3 Items: 
 
 

• Use a small correlation matrix: 
 

• The result is: 
 
 
 
 
 
 

• Now do the same for LAUNCH, GROUND, O&M 
 

Mean Sigma
Space Vehicle SEITPM 43.1 19.38
Spacecarft Bus 40.0 7.48
Payload 83.0 17.74

1 0.4 0.4
0.4 1 0.4
0.4 0.4 1

Mean Sigma
SPACE 166.1 35.26

Cost 

0 

0.002 

0.004 

0.006 

0.008 

0.01 

0.012 

0.014 

0 100 200 300 400 

PD
F 
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Economics of Multi-Level Risk 

• After summing all of the elements, we used : 
– 144 Correlation Coefficients vs. 780 (one big matrix) 

 
 
 
 
 
 

• Views of Risk at all roll-up levels 
• Easier to obtain values for correlation coefficients 

– We will discuss this in the next part 

# Elements # Rhos
Total System 5 10
SEITPM 5 10
Space Element 0 0

12 66
8 28

Ground 5 10
Launch 5 10
Ops 5 10

Number of Rhos 144
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What We Just Did 

AA 

BA 

CA 

DA 

EA 

AB 

BB 

CB 

DB 

EB 

AC 

BC 

CC 

DC 

EC 

AD 

BD 

CD 

DD 

ED 

AE 

BE 

CE 

DE 

EE 

A= SETPM  
     (5 elements) 
B= Space Segment 
     (20 elements) 
 
C= Ground Segment 
     (5 elements) 
 
D= Launch Segment 
     (5) elements) 
 
E= Operations Segment 
     (5 elements) 

Relied on AA, BB, CC, DD, and EE correlation 
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Mathematically 

Step1:  Calculate  
 
 
 
  
                             ; Where                          , and   
 
 
 
  
Step 2:  Need correlation coefficients of partition AA, BB 

and all σs to calculate  
 
 
 
 
 
  
 

BA σσ ,























=







=

5

4

3

2

1

σ
σ
σ
σ
σ

σ
σ

σ
B

A








=

2

1

σ
σ

σ A















=

5

4

3

σ
σ
σ

σ B

BA σσ ,



















++
+++
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+++++=
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53354334

522542243223
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2
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2
3

2
2

2
1

2 2

σσρ
σσρσσρ

σσρσσρσσρ
σσρσσρσσρσσρ

σσσσσσTot
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Mathematically 

• Step 3:  Calculate total variance using  
 

•    
•   
•   
•   

 
 

• This is useful when : 
• We know the correlation between subsystem elements  

– But not the correlation between subsystems from different 
elements to each other (i.e., thermal control SS in 
spacecraft to ground Command and control CSCIs)  

– But do have an idea of correlation between higher-level 
elements like space to ground. 

ABρ

BAABBATot σσρσσσ 2222 ++=

522542243223511541143113 σσρσσρσσρσσρσσρσσρσσρ +++++=BAAB

[ ]544553354334
2
5

2
4

2
32112

2
2

2
1

522542243223511541143113

22 σσρσσρσσρσσσσσρσσ
σσρσσρσσρσσρσσρσσρρ

+++++++

+++++
=AB



 
 

54 

Mathematically 

11 

21 

31 

41 

51 

12 

22 

32 

42 

52 

13 

23 

33 

43 

53 

14 

24 

34 

44 

54 

15 

25 

35 

45 

55 

522542243223511541143113 σσρσσρσσρσσρσσρσσρσσρ +++++=BAAB

Correlation between two larger blocks include the inter-element correlation coefficients from the large matrix 

ρAA 

ρAB ρBB 

ρBA 
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•Introduction 

•The Different Types of Correlation 

•Different Ways to Correlate Random 
Variables 

•Impact of Correlation on Risk Analysis 

•Modeling Correlation 

•Deriving Correlation Coefficients 

•Summary 
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Deriving Correlation Coefficients 

• 2 Ways to derive correlation coefficients 

ρ 

Data Available: 
(CADRE, CERs) 

No Data: 
Educated Guess 

Residual 
Analysis 

Retro- 
ICE 

Causal  
Guess 

N-Effect  
Guess 

Statistical Non-Statistical 

Effective 
ρ 

Knee in curve 
(Steve Book Method) 
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One Example: Determining Correlation 
When Data is Available using the 

Residual Analysis Method 

ρ 

Data Available: 
(CADRE, CERs) 

No Data: 
Educated Guess 

Residual 
Analysis 

Retro- 
ICE 

Causal  
Guess 

N-Effect  
Guess 

Statistical Non-Statistical 

Effective 
ρ 

Knee in curve 
(Steve Book Method) 
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Statistical Correlation From  
Residual Analysis 

• Percentage error or standard error are a measure of 
residual errors 

• Uncertainty and risk calculations 
– Use residual errors to represent uncertainty 
– Correlation between residuals 
 

 Cost vs. Weight 

0 
500 

1000 
1500 
2000 
2500 
3000 

0 20 40 60 80 100 

Weight (lbs) 

C
os

t (
$K

) 
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Deriving Correlation Coefficients 

• Sample calculation using randomly generated 
numbers 
– Error Xi and Error Yi represent regression residuals 

for 2 CERs (X and Y) for 8 programs 
 

( )( )

( ) ( )∑ ∑

∑

−−

−−
=

22
mimi

mimi

jk

yyxx

yyxx
ρ

PROGRAM Error, Xi Error, Yi (Xi-Xm) (Yi-Ym) (Xi-Xm)(Yi-Ym) (Xi-Xm)^2 (Yi-Ym)^2
1 0.5404 0.4224 0.1102 0.0167 0.0018 0.0121 0.0003
2 0.4943 0.3719 0.0641 -0.0339 -0.0022 0.0041 0.0011
3 0.4496 0.4340 0.0194 0.0282 0.0005 0.0004 0.0008
4 0.0088 0.2598 -0.4214 -0.1460 0.0615 0.1776 0.0213
5 0.5679 0.4291 0.1377 0.0234 0.0032 0.0190 0.0005
6 0.4486 0.5126 0.0184 0.1069 0.0020 0.0003 0.0114
7 0.7960 0.5357 0.3659 0.1300 0.0475 0.1339 0.0169
8 0.1359 0.2804 -0.2943 -0.1253 0.0369 0.0866 0.0157

SUM 0.1513 0.4340 0.0681
MEAN 0.4302 0.4057
RHO 0.8804 = 0.151 / SQRT(0.434 * 0.068)
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Other examples available on 
request… 

ρ 

Data Available: 
(CADRE, CERs) 

No Data: 
Educated Guess 

Residual 
Analysis 

Retro- 
ICE 

Causal  
Guess 

N-Effect  
Guess 

Statistical Non-Statistical 

Effective 
ρ 

Knee in curve 
(Steve Book Method) 
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Determining Correlation When Data is 
Not Available using the “N-effect” 

Correlation Method 

ρ 

Data Available: 
(CADRE, CERs) 

No Data: 
Educated Guess 

Residual 
Analysis 

Retro- 
ICE 

Causal  
Guess 

N-Effect  
Guess 

Statistical Non-Statistical 

Effective 
ρ 

Knee in curve 
(Steve Book Method) 
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The Problem 

• It is not always possible to calculate statistical 
correlation between WBS elements. 
– May be insufficient data to determine statistical 

correlation. 
– May be no known functional relationship between WBS 

elements. 
• Yet, there may be reason to believe increases or 

decreases in the cost of a certain WBS element are 
likely to cause corresponding increases or decreases in 
the cost of another WBS element. 

• In cases such as these, it is still desirable to construct a 
correlation matrix in order to ensure a truer picture of 
the total cost variance. 
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“N-effect” Correlation (1) 

• As N increases, the effective correlation (ρeff) will 
decrease in reaction to the central limit theorem. This is 
the “N-effect” 
 

• Why?  There is a fundamental limit to the predictive 
capability of our CERs.  Just by breaking the WBS up 
into more pieces doesn’t improve our estimates. 
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“N-effect” Correlation (2) 

• Average Correlation* in models seem to be sensitive to number 
(N) of CERs 

As N increases, ρ decreases 

© 2003 The Aerospace Corporation 

Maximum Possible Underestimation of Total-Cost Sigma 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Actual Correlation 

Pe
rc

en
t U

nd
er

es
tim

at
ed

 

NAFCOM N= 55 

USCM7 Bus N= 19 

 USCM7 FU Bus N= 11 

USCM8 Bus N= 17 

USCM8 Comm N= 13 

SSCM N= 9 

•The average correlation is different from the effective correlation, but the effect is similar 
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Determining Correlation from 
the Number of WBS Items 

• There appears to be a trend between the number of WBS 
Elements (N) in a cost model and the derived average 
correlation coefficient (ρAVG) and effective correlation 
ρEFF 

� ρEFF is a single number used to fill the correlation matrix  
 
 
 

• As N increases, ρEFF decreases 
• We looked at the following models: 

– NAFCOM (NASA/ Air Force Cost Model) 
– USCM7 (Unmanned Space Vehicle Cost Model, Ver. 7) 
– USCM8 (Unmanned Space Vehicle Cost Model, Ver. 8) 
– SSCM  (Small Satellite Cost Model) 

1
1

1
1

1
ρ 

ρ 
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Determining Correlation from 
Number of WBS Items  

• If we see a trend in the chart of percent under-
estimation of sigma vs. effective correlation, we 
have a sound basis for determining correlations 
when the number of WBS elements grows. 

• If the actual percent underestimated is k then the N-
effect correlation ρN for a model with N CERs would 
be: 
 
 

  
 
 

• So, for k=50%:  
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Summary 

• Two types of correlation 
– Spearman (Rank) = Monotonicity 
– Pearson (Product Moment) = Linearity 

• Different Ways to Correlate Random Variables 
– Purely Statistical  
– Functional 
– Causal Statistical 

• Impact of Correlation on Risk Analysis 
– Affects shape and variance 

• Modeling Correlation 
– Multilevel risk 

• Deriving Correlation Coefficients 
– Many choices available with and without available data 
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