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ANSWERS TO SELETED EXERCISES

CHAPTER 2
Question 2.  One worry might be that the algorithm did not converge to the maximum.  This
could be because the log-likelihood was very flat near the maximum point or that sparce data
cause a lack of estimability.  A second concern might be that mixture distributions are not in
the exponential family and the log-likelihood function might have more than a single mode.
Both issues might be helped by using different starting positions for the parameters.  A more
sophisticated approach would be to use simulated annealing.

Question 3. This is an easy question, but tricky if one is not thinking about the Principle of
Parsimony!  Instead of estimating 8 parameters, only 2 are required for the models under
consideration, thus precision is often increased.  In addition, one has a smoothed estimate of
the functional response and this can be used for prediction outside the range of the data.  This
is another case where modeling has several rewards.

Question 4.  This is a great question to ask of senior faculty members in various departments.
See if they can point you to a model that exactly represents full reality.  Proving that a model
was the exact true model seems very difficult.

Question 6.  This question should be easy if you understood the issue behind Question 3
(above).  The parsimonious model had 6-10 parameters, whereas the full binomial model had
52 parameters that had to be estimated.  The 52 estimates had high variances and this hampers
interpretation.

CHAPTER 3
Question 1.  I have no good answer to Cox's statement.  I know of no literature where one
objective (e.g., prediction) calls for one selection method whereas another objective (e.g.,
explanation) calls for another.  Theory seems lacking; perhaps I am unaware of some aspect of
the literature on this?  There is a "focused Information Criterion" that tries to focus on a subset
of the model parameters; I doubt if this was the subject of Cox's concern.

Question 2.  To me, this ecotone issue suggests that PhD students ought to take a course or
two well outside of their disipline (e.g., econometrics?).

Question 3.  The classic example is the variance for samples from normally distributed
populations.  The MLE is ( – ) /  and the bias-adjusted form is ( – ) /( 1) -- this is,! !x n x n–^ ^3 3

# #. .
of course, the usual least squares estimate.  Adjusting estimators for bias is standard practice
in mathematical statistics.  However, in some sense, their is often too much concern for small
sample bias.  Bayesians do not say much about such bias in estimators.  I consider the issue of
such bias to be over-rated.



Question 9.  This is a clear case where AICc should be used as an estimate of expected K-L
information.

Question 10.  This student is asking a good question.  A good answer starts with a clear
explanation of the Principle of Parsimony and what it has to say about under- and over-fitting
and how bias decreases as more parameters are introduced; however, the uncertainty is
increasing as there new parameters must be estimated.  Also related her is the concept of
tapering effect size and that these effects can be sequentially revealed as more data (and
information) are available.

Question 11.  The moral might be just to always use AICc.  If sample size is small or if the
number of parameters is large, then AICc better estimates expected K-L information.

Question 12.  This is a hard question and I doubt if many experts in the model selection arena
would want to stick their necks out very far on this issue.  My thought would be that both are
correct and have a sound underlying rationale.  I would venture that the results would be very
similar.  In particular, if model averaging were done I would be the results would be virtually
idendical.  If pressed into a choice I might perfer TIC just in case none of the models were of
value.

Question 13.  My approach would be to examine 2 models: one with a dummy variable for
gender and another model without this variable.  All other variables would be the same across
the 2 models.  Then look at the evidence ratio for the two models.  Other approaches could
rest on the model likelihoods or model probabilities.  These approaches seem superior to the
traditional -test on the  value for the binary gender variable.  Here the null hypothesis wouldt "
be that 0, and the alternative hypothesis is that 0.  Then one selects an  value, hopes" " !´ Á
that the sampling distribution is well approximated by the  distribution, computes a -value,t P
and makes a decision concerning "statistical signficance."
A related note deals with asymptotics in null hypothesis testing.  Sample size can be infinite
(or lets say  = a billion trillion) and the investigator will still see an error  percent of then !
time!  This is inconsistent with reasoning; why would the method be incorrect 5% of the time
even with huge sample size.  Clearly  should be a decreasing function of sample size by this!
is not the case in null hypothesis testing.

CHAPTER 4
Question 1.  Model Selection Statistics for the Finch Bill Data

 Model            log( )             AIC          Delta             wL K   3

___________________________________________________
     1               -66.21        2        136.42        25.48          0.0000019
     2               -57.77        5        125.54        14.60          0.0004488
     3               -59.43        6        130.86        19.92          0.0000314
     4               -60.98        6        133.96        23.02          0.0000067
     5               -49.47        6        110.94          0                0.6643147
     6               -49.47        7        112.94         2.00            0.2443877



     7               -49.46        8        114.92         3.98            0.0908088
____________________________________________________

Selected Parameter Estimates

Model       se( )      se( )      se( )^ ^ ^ ^ ^ ^^ ^ ^" " " " " "" " # # $ $

_________________________________________
   1 -- -- --
   2 -- -- --
   3 0.07     0.44 -- --
   4 0.14     0.29 -- --
   5 1.63     0.30 -- --
   6  1.59     0.29 --0.21     0.38
   7  1.55     0.34 0.20     0.37 0.03     0.47
_________________________________________

In Model 3 the  modifies T (a linear time trend)"
In Model 4 the  modifies X  (human distrubance)" "

In Model 5 the  modifies X  (wet/dry years)" #

In Model 6 the s modify both X  and X" " #

In Model 7 the s modify both X  and X  and the interaction" " #

These  values are parameters in the submodels for the mixture coefficient " 13

[not to be confused with the parameters  and  in the gamma distribution].! "

a.  The best hypothesis corresponds to model 5.  It is "best" in the sense of smallest K-L
information loss or that it is the hypothesis/model that is closest to full reality.  It is too easy to
say it has the smallest AICc value (it does) or it has a  delta value of 0 (it does).  While true,
these are proxy statements; the real issue reflects back to K-L information.  This is a fine point
but worth remembering when writing a scientific manuscript.
b.  A clean approach to answering this question is the evidence ratio between models 1 and 2;
this is about 236 and seems fairly convincing.  Other evidence can be examined such as the
fact that all the models of bimodality are better than the unimodal model.
c.  This calls for a value judgement.  I believe this could be considered strong evidence against
unimodality.  People used to think "1 in 20" was "significant"; surely 1 in 236 must be fairly
strong.
d.  The evidence supports the importance of precipitation ( , but not the index to humanX#Ñ
disturbance ( .  This inference stems from the delta values for models 4 and 5.  Note alsoX"Ñ
the MLEs:  the  for human disturbance is 0.14 with se 0.29, whereas the  for wet/dry is" "œ
1.63 with se 0.30.œ
e.  The  for the interaction term is nearly 0 at 0.03 with a very large se= 0.47; thus there is"
virtually no support for the intereaction term.
An important issue here is that the log-likelihood value changed very little in models 6 and 7.
This is the "pretending variable problem."  The index to human disturbance did not improve
the fit of the model (thus, log( ) was virtually unchanged); but the penalty for its addition wasL



slight (2), thus it appears to be a hypothesis/model that is "good."  Indeed, it is a good model;
however, this fact should not be confused with the importance of the index.  Note further that
model 7 with both covariates and an intereaction terms is also the pretending variable
problem.  Here it appears that the model with both covariates and their interaction are
important; however, the fact that the maximized log-likelihood changed little is the key to
understanding.  Again, is model 7 a good model, yes.
But this should not be taken as evidence about the importance of the interaction term.
Once one understanding the issues with models 6 and 7, it is seen that only model 5 has any
substantial support.

Question2.  The -value and the model probability are different entities and should not reallyP
be compared.  The value is the probability of a test statistic as large as 6.735 or larger, givenP-
the null hypothesis is true.  Only the null hypothesis is "tested" and the value is not a properP-
strength of evidence (although people misuse it as such).  The alternative hypothesis is
supported by defaut IF the null hypothesis is rejected.  The alternative hypothesis is never
tested.
The model probability is conditional on the data and is the probability of the model for the
null hypothesis being the best model, given the data.  Similarly, one also has the probability of
the model for the alternative hypothesis being the best, given the data.  No test statistic is
involved, there is no -level, no sampling distribution, no -value, and no decision concerning! P
"statistical significance."  Model probabilities are a measure of the strenth of evidence.  Ratios
of model probabilities are evidence ratios.

Question 3.  Probabilities are positive qunatities that sum to 1 and are usually defined as a
long term frequency in repeated samples.  Bayesians have extended probabilities to measure
belief or uncertainty and this has been controversial.  Likelihood is a relative quantity.  One
likelihood, by itself, is not interpretable.  Likelihoods do not sum to 1 but are useful in
comparing things.  Likelihood and probability are very different things.
Question 4.  The conditioning is twofold in this case.  First, the probability is conditioned on
the data.  Second, it is conditional on the model set.  An evidence ratio just reflects the relative
support for any model  and any model , regardless of what other models might be in the set.i j
Question 5.  First, it should be remembered that R  is primarily meant to be a descriptive#

statistic; it was never meant to be used in model selection.  As variables are entered into a
regression model, the estimated residual variance is biased low and this makes it easier for an
additional variable to enter the model (over-fitting).  Using R  for model selection often leads#

to an over-fitted model.
Question 6.  Consider 2 models A and B.  During the derivation from K-L information to AIC
there is a term (call it ) that is constant across models.  Thus, we can think of the models asc
(trying to keep this simple and avoid notation)  + A and  + B.     When these are differencedc c
to obtain values, we find (  + A) – (  + B) =  + A –  – B = A – B.  The constant is?3 c c c  c
eliminated by the simple differencing.  (This example assumed model B was the better of the
two, assuming model A is the better model would not change the illustration.)
Question 7.  She is correct in stating that the model for  is estimated to be the best of the 6H"

models in the set.  However, models for  and  are hardly "close," with  values of 19H H# $ 3?
and 23, respectively.  These represent evidence ratios of 13,360 and 98,716, respectively.  It is
the difference that is important here; in this case the differences were around 20 and this is



vary large.  It is often easy to think that AICc values of 3,211 and 3,234 are "similar" in
magnitude and conclude (incorrectly) that they are "close."
The evidence ratio is a peoper measure of the strength of evidence.  Putting this into the
analogy of raffle tickets is often helpful in trying to quality the strength of evidence.  In this
example, the model for  has 13,360 raffle tickets and the model for  has one ticket.H H" #

Clearly, value judements, based on the quantitative evidence, are expected to be similar and
every fair person would conclude that the hypothesis  is implausible, relative to hypothesisH#

H".

Question 8.
Many practical applications focus on a simple " -test" of a set of observations partitioned byt
treatment and control groups.  Here, as with all experiments, the main issue is the estimation
of effect size ( ) -- the difference by the treatment.  Using traditional methods, oneE caused 
often computes a " -value," which is the probability of a test statistic as large as, or largerP
than, that observed, the null hypothesis is true.  [Many people error in thinking that a -given P
value is the probability that the null hypothsis is true -- this is not the proper meaning of a -P
value.]

Information-theoretic approaches can be employed to provide more meaningful quantitites
such as,

     the likelihood of both the null hypothesis and the alternative
     hypothesis, given the data, (H ) and (H ),L L! +l.+>+ l.+>+

     the probability of both the null hypothesis and the alternative
     hypothesis, given the data, Prob(H ) and  Prob(H ),! +l.+>+ l.+>+

     the evidence ratio of the two hypotheses.

The model likelihoods and model probabilities have a rigorous, clean interpretation of the
strength of evidence.  [A -value is not a measure of strength of evidence.]  Model averagedP
estimates of effect size are also possible for observational studies.

The computation of these quantities is quite easy because a proper residual sum of squares
(RSS) is available from the statistics leading to a -statistic and the -value.  Given the RSSt P
for each model,

                    AICc = log( ) + 2  + ,       and           = AICc  – AICc  .n K† RSS 2 ( +1)
1n n–k–

K K ?3 3 738

Model likelihoods, model probabilities and evidence ratios are easily computed from the ?3

The procedure for computing the RSS (using the MLEs of the structural parameters) is given
below for both the classical unpaired and paired designs.  Note,  is the maximumRSS

n
likelihood estimate (MLE) of the residual variance.

Unpaired Design:



The null hypothesis, H  Effect size = 0.9   

. 5 and ,  = 2 parameters.  RSS =  ( )  + ( )# # #K x – x –^ ^! !-3 >3. .

The alternative hypothesis E, H    Effect size =  =  –  .+ - >. .

. . 5- >
# # #, , and ,  = 3 parameters.   RSS = ( )  + ( )K x – x –^ ^! !-3 >3- >. .

Paired Design:  The differences ( ) are critical; = d x  – x  d  .3 -3 >3 3

The null hypothesis, H   Effect size = 0.9

5# #,  = 1 parameters.  RSS =  ( )K d!n
3

The alternative hypothesis E d .
_

, H    Effect size =  = +

d K d d
_ _

 and ,  = 2 parameters.   RSS = ( – )5# #!n
3

These "treatment/control" data, including extensions to ANOVA designs, constitute a single
data set.

Consider the example from Snedecor and Cochran (1967),

                                                         Table 4.3.1
                       Number of Lesions on Halves of Tobacco Leaves
__________________________________________________________
                   Prepara-  Prepara-                                                       Squared
                     tion 1       tion 2            Difference         Deviation   deviation
Pair No.         X            X                D = X  - X        d = D - D          d

_
" # " #

#

__________________________________________________________
    1                31           18                     13                      9                  81
    2                20            17                      3                     -1                   1
    3                18            14                      4                      0                   0
    4                17            11                      6                      2                   4
    5                 9             10                     -1                    -5                  25
    6                 8               7                      1                     -3                   9
    7               10              5                       5                      1                   1
    8                 7              6                       1                     -3                  9
_________________________________________________________
Total            120            88                     32                    0                130
_________________________________________________________
Mean             15            11                   D=4                             S =18.57

_
H
#

_________________________________________________________

Under the null hypothesis the RSS is 258 (from squaring and summing the 4th column in the
table above; 13 +3 +4 ... = 258) with a sample ( ) of 8 pairs.  =1 under the null hypothesis,# # # n K

AICc = log( ) + 2  + ,n K† RSS 2 ( +1)
1n n–k–

K K

        = 8 log( ) + 2(1) + ,† 258
8 8 1 1

2(1)(2)
– –



                                                        = 30.4548 .

Under the alternative hypothesis, =2; the RSS is 130 (as shown in the table above)K
AICc = log( ) + 2  + ,n K† RSS 2 ( +1)

1n n–k–
K K

        = 8 log( ) + 2(2) + ,† 130
8 8–2 1

2(2)(3)
–

                                                        = 28.7047 .

?3 3 738 = AICc  – AICc  .
                                       H  = 30.4548 - 28.7047 = 1.75019

                                       H  = 28.7047 - 28.7047 = 0 .+

The best model is the alternative hypothesis H , estimated effect =4.
+

The likelihood of each model, given the data is

                       (H ) = exp(-  ) = 0.4168L o
1
2l.+>+ ?3

and
                      (H ) = exp(-  ) = 1.0000 .L + 3l.+>+ 1

2?

The model for H  is more likely.
+

The probability of each model, given the data is

                      Prob(H ) =  0.4169/1.4168 = 0.2942ol.+>+
and
                      Prob(H ) = 1.0000/1.4168 = 0.7058 .+l.+>+
The model for H  is more probable.

+

The evidence ratio is 1.0000/0.4168 or 0.7058/0.2942 = 2.399.
The evidence supports model H  over model H .  The difference is hardly overwhelming; the+ o
evidence might be judged to be weak.

These results differ from the tradition approach as Snedecor and Cochran (1967) report the -t
statistic of 2.63, with 7 df, a -value of "about 0.04" and state that the null hypothesis isP
rejected.

Several points can be made here.  Most importantly, the -value is not the same as theP
probability of model H ; they are not really comparable as they mean different things.  Theo
" -value" in this case is the probability of a test statistic as large as 2.63, or larger, theP given 
null hypothesis is true.  -values are a "tail probability" as they include probabilities for dataP
more extreme than those observed.  This approach gauges the probability of the data, or more
extreme data, given the null is true.  The -value rests critically on the assymptotic P
distribution of the test statistic.  The -value should not be used as if it were a formal strengthP
of evidence.



The model probabilities, either information-theoretic or Bayesian, provide the probability of
the null model, given the data.  They also provide the probability for other models; there might
be only a single alternative or additional alternative models.  There is no test statistic, no
assumptions about the theoretical distribution of the test statistic, no concept of a cut-off ( ),!
and no decision about "statistical significance."

In a paired or unpaired observational study one may want to model average the estimate of
effect size.  This is easy under an information-theoretic approach and impossible under the
traditional null hypothesis testing approach.  Finally, the variance of such model averaged
estimates can easily incorporate a variance component due to model selection uncertainty.

ANOVA models can be similarly cast into a simple information-theoretic framework.  Here
again, one needs only the RSS for each model and the sample size.  These quantities are
always given by computer software packages.  Then one computes
     AICc = log( ) + 2  + ,n K† RSS 2 ( +1)

1n n–k–
K K

     ,?3

     (model ),L il.+>+
     Prob(model ), andil.+>+
     evidence ratios.

Regression models are easily cast into a information-theoretic framework; again one starts
with the RSS.

People naturally tend to cling to traditional -tests and ANOVAs because this is the only thingt
they have been taught and they are familiar with the procedure.  Better methods have been
developed since the early methods in the 1920s and 30s.  These methods are superior in
virtually all respects and their use is encouraged.

CHAPTER 5
Question 1.  No.  Sometimes this parameter modifies the year of the study (T) while in other
models it modifies the index to human disturbance.  It makes no sense to average such
estimates.  Once the presence of a "pretending variable" is noticed, there is little need for
model averaging or incorporating a variance component for model selection uncertainty
(there is little model selection uncertainty).

Question 2.  The evidence ratio E  = 2.65 and is a measure of the strength of evidence&ß)

concerning the structure on the detection probabilities.  Model 5 allows these to be modeled
as a constant, ., while model 8 allows these probabilities to be time-dependent, .  Thep p>

structure on the occupancy rate  is the same for both models.  Thus the evaluation dealsR
just with . or In this case the evidence is probably best described as weak, but there isp  p>Þ

no support for the notion that the detection probabilities are time dependent.

Question 3.  The advantages is that often the first 1-3 PCs carry most of the information, thus
reducing the number of regression paramaters that must be estimated.  The disadvantages



frequently include the inability to interpret the result and the fact that all the original variables
must still be measured.

Question 4.  Burnham and Anderson (2002) explain the approach (Sect. 2.13) and offer a
number of comparisons (e.g., Table 5.12).

Question 5.  Perhaps there are ways to pool data from similar studies by summing either the
AICc values or the  values?  This is one of many areas needing more work.?
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