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Introduction

• Correlation is an important consideration in cost risk 
analysis

• When correlation is ignored, you are making the de facto 
assumption that all risks are independent
– “Even when you choose not to decide, you still have made a 

choice” (Rush, Free Will)
• Assuming no correlation results in a vast understatement 

of risk
• In 1996, Don Mackenzie wrote that “One of the more 

difficult chores in cost risk analysis is establishing 
appropriate levels of correlation… “ (Mackenzie 1996)
– Seventeen years later, this is still true

• This presentation is an attempt at making forward 
progress on this issue
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Definitions

• Consider two random variables, X and Y. 
• The mean of X, E(X), is denoted by μx, and similarly, the mean 

of Y, E(Y), is denoted by μy

• The variance of X, Var(X), is denoted by      , and similarly, the 
variance of Y, Var(Y), is denoted by        

• The variance of X and Y are equal to:

• Correlation, denoted by the Greek letter r (“rho”), is defined by

3

2
Xσ

2
Yσ

[ ]22 )X(E)X(E)X,X(Cov)X(Var −==

[ ]22 YEYEYYCovYVar )()(),()( −==

YX

YX
XY

)XY(E
)Y(Var)X(Var

)Y(E)X(E)XY(E
)Y(Var)X(Var

)Y,Xcov()Y,X(Corr
σσ

μμ
ρ

−
=

−
===



Total System Mean and Variance

• For n WBS elements, the mean and the variance of 
the total cost are defined by:
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Total Variance with Level Correlation
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• Suppose (for simplicity)
– There are n WBS Elements

– Each

– Each

– Total Cost
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Impact of Assuming Independence

• For a 100 element WBS assuming independence among all 
WBS elements when the true underlying correlation is equal to 
20% results in an underestimate of total system standard 
deviation equal to 80%!
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Example of Impact  

• As an example, consider a system with 10 
subsystems, each with mean equal to $10 million 
and standard deviation equal to $3 million

• For 100 elements and 1,000 elements, assuming 
correlation is zero when it is actually 20% results in 
underestimating the 80th percentile by 8-10%, and if 
the correlation is 60%, the 80th percentile is 
underestimated by 15-17%
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Number of WBS 
Elements

Independence
20% 

Correlation
60% 

Correlation

10 $108 $113 $119
100 $1,025 $1,111 $1,182
1,000 $10,080 $11,092 $11,815

80% Confidence Level (TY$, Millions)



Default Correlation

• Notice in the graph on the previous chart there is an 
apparent “knee” in the curve around 20%
– Above 20% correlation the consequence of assuming less 

correlation begins to dwindle
– This graph is the basis for assuming 20-30% for default 

correlation for elements between which there is no 
functional correlation 

– Book (Book 1999) recommends 20% as a default correlation 
value because of this

• However, the graph does not tell us how much the 
total standard deviation is underestimated because 
correlation is assumed to be 20%, but is actually 
60%, for example
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Underestimating Correlation with the 
Default 20%

• For a 100-element WBS, if the correlation is assumed 
to be 20% but is actually 60%, the total standard 
deviation is underestimated by 40% 
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Robust Approach

• A more robust approach to assigning correlations 
would be to use the value that results in the least 
amount of error in the variance
– It is robust in the sense that without solid evidence to 

assign a correlation value, it minimizes the amount by which 
the total standard is misestimated due to the correlation 
assumption 

– This robust default measure of correlation would be a value 
for correlation that would minimize the error when the 
assumed correlation differs from the actual underlying 
correlation
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Absolute Error

• We are interested in the absolute value of the error, 
since if we consider negative and positive values, 
they may offset each other

• Let ε denote the error, then we are interested in |ε|, 
where |ε| is defined by
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Expected Value of Absolute Error

• If we assume that the prior distribution of correlation on 
the interval (0,1) is uniform, then the expected value of 
the absolute error |ε|  of the variance as a function of the 
assumed correlation is defined by

since

• Thus the approach is to find the value of ρ that minimizes 
the expected (absolute) error

• This equation provides the expected error as a function 
of ρ, and then we minimize this function with respect to ρ
using techniques from elementary Calculus
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What is the Error?

• Now that we have determined how to determine the 
minimum error, we need to figure out what to 
minimize

• We present several different choices, calculate the 
results, and provide pros and cons for each
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Case 1: Percentage Error (of Actual)

• Denote the assumed correlation by ρ1 and the actual 
correlation by ρ2

• In this first case, we consider the metric that Book 
(Book, 1999) looked at when measuring over- and 
under-estimation of correlation, which is to consider 
the percentage error in variance as a percentage of 
the actual correlation
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Case 1: Calculating Expected Absolute 
Error (1 of 2)

• The expected absolute error is calculated* as

• This is a function of the number of WBS elements (n) 
and the assumed correlation (ρ1)

• Minimizing this with respect to ρ1 we find that

*See the paper for detailed calculations
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Case 1: Calculating Expected Absolute 
Error (2 of 2)

• The limit of this minimum as              is 25%
• This is close to the 20% default value advocated by Book 

(Book, 1999)
• However, the total error is minimized by this value because of 

the large penalty assigned when overestimating actual 
correlations near zero 

• For example, let n= 100 and assume the correlation is 40%. The 
absolute percentage error when the actual correlation is equal 
to zero is 537%, while the absolute percentage error when the 
actual correlation is equal to 80% is only 29%

• The penalty should not differ greatly whether you are 
overestimating or underestimating
– An easy way to overcome this issue is to examine the percent 

error as a function of the assumed correlation, which is considered 
in Case 2 
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Case 2: Percentage Error (of Assumed)      
(1 of 2)

• This case is similar to Case 1, only the denominator 
is different

• In this case,
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Case 2: Percentage Error (of Assumed)      
(2 of 2)

• The value of ρ1 that minimizes the expected 
(absolute) error is

• The limit of ρ1 as            is 
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Impact of Case 2

• The single recommended value from this approach 
is 63% 
– This is much larger than the 25% value using the other 

approach, or the 20% rule of thumb widely used in practice

• The impact on standard deviation in increasing 
default correlation from 20% to 63% will result in a 
significant increase in standard deviation
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n
% Increase 

in  σ

10 54.3%
30 68.3%

100 74.5%
1,000 77.2%

10,000 77.5%



Case 3: Total Absolute Difference

• The absolute difference could also be considered as 
a metric

• In this case, the absolute expected value of the error 
occurs when ρ1 = 50%
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Case 4: Case 1 with Truncated Limits (1 of 2)

• If we consider the first case, much of the reason why the 
minimum is so low compared to the other cases is the error 
when the actual correlation is close to 0%
– We know that in most case the correlation is not 0%, and we know

that it is not 100%
• Absolute percentage error for variance as a percent of the 

actual correlation for 100 WBS elements:
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Case 4: Case 1 with Truncated Limits (1 of 2)

• If we truncate the actual correlation to be uniform in 
the interval (0.1,0.9) then the expected value of the 
absolute percent error is minimized when

• The limit of this as            is 40%
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Summary of the Four Cases

• All four cases minimize the expected value of the 
absolute error in the variance, but use different metrics 
for measuring error

• Case 1: 
– Error is measured as a percentage of the variance that results 

from the actual correlation, result in the limit is 25%
• Case 2: 

– Error is measured as a percentage of the variance that results 
from the assumed correlation, result in the limit is 63%

• Case 3: 
– Error is measured as total difference in variances, result is 50%

• Case 4: 
– Error is measured as a percentage of the variance that results 

from the actual correlation, with the correlation range limited to 
10-90%; result is 40%
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Recommendation

• I recommend a percentage difference approach
– Knowing that the difference between the estimated total 

standard deviation and the actual total standard deviation is 
$100 million doesn’t tell you much, since it could be large if 
the standard deviation is $100 million, or relatively small if 
the total standard deviation is $1 billion

• Calculating the error based as a percentage of the 
assumed correlation is logical
– The issue with looking at the error relative to the actual 

correlation is that we don’t know the actual correlation - we 
only know the assumed correlation. 

– The same is true for CER residuals
• For the Minimum Unbiased Percent Error (MUPE) and the Zero 

bias Minimum Percent Error (ZMPE) CER methods look at the 
percentage error from the estimate, not from the actual

• We should use the same metric in looking at correlation
• Bottom line: I recommend using a default value for 

correlation that is equal to 63%
24



Empirical Evidence for Correlation

• There is some limited empirical evidence on 
correlation for spacecraft

• This ranges from 16-40% at the subsystem level
– Smart calculated an average correlation in the range 16-20% 

for NASA/Air Force Cost Model hardware subsystems 
(Smart, 2004)

– Covert and Anderson calculated an average correlation 
equal to 16.8% for Unmanned Spacecraft Cost Model 
subsystems (Covert and Anderson, 2005)

– Mackenzie and Addison reported correlations in the range 
20-40% for average unit cost of subsystems NRO data 
(Mackenzie and Addison, 2000)

• However, this evidence is only for one commodity
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Summary (1 of 2)

• 20% is often the default value when there is no 
information to provide informed input
– This level is too low

• Using a more robust approach, we have shown that 
default values in the range 40-63% are more 
reasonable
– I recommend 63% as a default value

• Only downside is potential for overestimation
– However as a profession we do not have a reputation for 

overestimation
– Increasing default correlation value may help counter this
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Summary (2 of 2)

• Example of underestimation of risk
– For a risk analysis conducted for the Tethered Satellite 

System, the actual cost was more than double the 95th

percentile of the original cost risk analysis 
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